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Herodotus

1. Introduction

The history of the study of probability is inextricably interwoven with the study of games
of chance. Many of the earliest attempts to model games of chance were motivated by the
mundane desire to ‘beat the house’ and develop a winning strategy for games in casinos.
Conversely, the casinos were equally motivated to devise games that guaranteed – in the
long run – that the casino would make money. These origins sometimes leave one with
the impression that the study of probability is the study of various kinds of more or less
dissolute behaviors. Even modern examples often have names like ‘drunkard’s walk’ as
though mathematicians have taken a kind of perverse delight in unsavory applications of
the theory. However much truth there might be in this, it is true that games of chance
provide a set of examples that are easy to understand and explain. As with most of mathe-
matics, tools developed to solve one set of problems often turn out to solve many kinds of
problems. Problems as apparently different as ‘balls in urns,’ network switches, Mendelian
genetics and sorting algorithms in a computer program often turn out to have mathematical
similarities even though the contexts appear very different.

As applications go, games of chance are an especially appealing class of problems for
introducing probabilistic concepts since they have simple and easily understood rules. The
same mathematical model that describes, say, the arrival of calls in a telephony network,
might also describe a simple casino game. The latter has the advantage that one needs
minimal technical knowledge to grasp the problem. By way of example, consider dice
games.

According to the Greek historian Herodotus dice were invented in the fifth century BCE
by the Lydians of Asia Minor. However, dice at least 2000 years older have been found in
Egyptian ruins and there is some evidence that dice are as much as 6000 years old. The
Greeks and Romans used the familiar modern cubical dice with spots marking the different
sides, but also used animal bones such as sheep ankle bones. The four-sided anklebones
were called astaralagi and the more modern six-sided spotted dice tesserae . Many dice
games involve pairs of dice. Both of the Latin words are plural, as is the English word dice

the plural of die for a singled spotted cube.

1.1. Example.

Suppose that two fair die are rolled and the player wins the game if the sum of the spots is
”seven” or ”eleven.” What are the chances that the player wins?

1. Introduction 1



Solution. To answer this question we need to consider what the possible outcomes, or
rolls of the dice, might look like. Since there are two dice, we could think of them as being
rolled first one, then the other. If the die are rolled sequentially then the rolls of the dice
consist of thirty-six different possibilities:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

The rolls that sum to seven are the six on the main diagonal. There are exactly two rolls
that sum to eleven, so there are a total of eight of the 36 rolls that sum to either seven or
eleven. Thus the probability of winning this game is eight out of thirty-six or 2

9
.

One might ask why we can think of the two die as being rolled sequentially? After
all, in the context of our game the rolls (3,4) and (4,3) are the "same" since the sum is
seven in both cases. In terms of winning or losing, the order in which the die are rolled
does not matter; indeed, we would expect that the player would most likely roll the dice
simultaneously. Following this reasoning, it would seem that an equally valid mental picture
would be

1&1 1&2 1&3 1&4 1&5 1&6
- 2&2 2&3 2&4 2&5 2&6
- - 3&3 3&4 3&5 3&6

- - - 4&4 4&5 4&6
- - - - 5&5 5&6

- - - - - 6&6

This table lists the distinguishable outcomes of our game and the order of the rolls is not
recorded. Is there some reason to prefer one table over the other for our mental picture of
the outcomes?

The basic answer is that both are equally valid, but one is more useful in terms of
calculating probabilities. In the first table, all of the listed outcomes are equally likely while
in the second table some (those on the diagonal) are less likely than others. Certainly if
the die are thrown sequentially – first one, then the other – then the first table of ordered
pairs provides a correct thought-picture of 36 equally likely outcomes. Imagine, if you will,
a game in which the player may either throw the dice simultaneously or sequentially, but
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does so in a locked chamber where the player cannot be observed rolling the dice. After
the dice are thrown, you enter the room and observe the results. Intuitively, the chances
of winning should be same regardless of how the dice are thrown. Further the results look

the same in this imaginary scenario regardless of how the dice were thrown. Thus since
the first table gives the correct thought-picture for sequential throws then it must also give
the correct thought-picture for simultaneous throws. After all, the die don’t "know" if they
were thrown sequentially or not!

One could also carry out an experiment to see if the above reasoning can be empiri-
cally supported. For example, it would be easy to roll a pair of dice a large number of times
(say 500 times). If the rolls are simultaneous, then we could write in the second table the
number of times we observed each outcome. If the model from the first table is correct, one
would expect to see around 14 observations (500 ÷ 36) in each of the diagonal cells and
about 28 each the remaining cells. On the other hand, if the 21 outcomes in the second
table were "equally likely," then one would expect to see about 23 observations (500 ÷ 21)
in each of the 21 cells. Since this experiment is random, being based on the roll of dice,
you of course won’t get exactly the expected results. But your results will be far closer to
the first model than to the second. Thus empirical evidence also supports the reasoning
underlying "36 equally likely outcomes." (See the exercises.)

In the preceding example we found the probability of winning the game. Thus if the
game were played repeatedly, say 900 times, we would expect to win about 200 of the
games and to lose about 700 of the games. The odds of winning are then

200

700

or two sevenths, since we win the game 2 times for every seven times we lose game. More
generally if the chances of winning a game are p then the odds of winning are

chances of winning

chances of losing
=

p

1 − p
.

Alternatively, if we know that the odds of winning are x then the probability p of winning is

p =
x

1 + x
.

The payoffs for games of chance are sometimes phrased in terms of "odds." For example,
in the above game if a one dollar bet pays off at odds of "two to seven" then the game is
"fair" and the house and player will both break even over the long run. If, on the other hand,
the game pays off at lower odds than break-even, then the house will always make a profit.
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1.2. Example.

A simple dice game is called over and under seven. In this game the casino rolls a pair of
dice and players bet on the outcome. The pay out is usually

sum of the spots is larger than seven casino pays off at even odds

sum of the spots is less than seven casino pays off at even odds
seven payoff is four times the bet

If the sum of the spots is not seven this is called evens. Notice if a player bets on evens, then
the best possible outcome is to lose most of the time while some of the time – when the sum
of the spots is seven – the player will win four times the bet. If a player bets ”over seven” or
”under seven” then the player can at best break even and never win. On the other hand, the
casino makes money from some betters regardless of the roll of the dice. If the sum of the
spots is larger than seven, then the casino keeps all of the ”over seven” and ”evens” bets. If
the sum of the spots is less than seven, then the casino keeps all of the ”under seven” and
”evens” bets. If the sum of the spots is exactly seven, then the casino keeps both the ”over
seven” and ”under seven” bets.

The question here is whether or not the casino will make money on this game, regardless
of the strategies followed by the players.

Solution. To answer this question we need to consider what the possible outcomes,
or rolls of the dice, might look like. Since there are two dice, we can think of them as
being rolled first one, then the other. Thus the rolls of the dice consist of thirty-six different
possibilities:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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It is exactly the six outcomes on the ascending diagonal that sum to seven:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Now this game has three possible outcomes: under seven, seven, and over seven.
Under seven is exactly the following rolls of the dice:

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3)
(4,1) (4,2)

(5,1)

for a total of fifteen different rolls. On these rolls, the bettor retains the bet and the casino
has no pay out. However, on the other twenty-one rolls the casino keeps the bet. Thus,
while the casino pays off at even odds on an "under seven" bet, the casino actually "wins"
an "under seven" bet 58% of the time:

0.5833 =
21

36

Similarly, the casino wins an "over seven" bet 58% of the time, again paying out at
even odds. While both the "over seven" and "under seven" bets appear to be break-even,
they in fact favor the casino.

What about the player who consistently bets "evens?" In this case, the casino wins the
bet five times more often than it loses, while paying out at odds of only four to one. To see
this, recall that there are exactly six ways that a roll of dice can total seven out of thirty-six
possible rolls. Thus the casino wins a bet of "evens" five-sixths of the time and loses only
one-sixth of the time, which implies that the casino has five-to-one odds (five-sixths being
five times one-sixth) of winning the bet. Since the casino only pays at four-to-one odds, the
game favors the casino even if the bet is "evens."

To approach the "evens" case another way, consider the player who bets on seven
consistently. Such a player will win one sixth of the time. Thus in 600 one-dollar bets on
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seven, the pay outs and profits for the casino ought to look something like:

keeps the bet 500 times makes $500
pays on the winning seven 100 times pays out $400

Notice that the casino would expect to profit about $100 in 600 bets of seven. If the casino
paid sevens off at five to one rather than four to one, then the casino would exactly break
even on this game.

1.3. Example.

Another simple dice game is sixes bet. In this game, the player has four tries to roll a six.
Usually the bet is offered at even money, i.e., if a six is rolled in four tries the player wins $1,
otherwise the player loses $1. In repeated plays of this game would you expect the player to
win more often, lose more often, or have equal chances of winning and losing?

Solution. In analyzing this game it is useful to think about what the outcomes look like.
Basically there are four sequential rolls of the dice so the outcome (1, 2, 6, 6) is distin-
guishable from the outcome (2, 1, 6, 6). The first question is ‘how many outcomes’ are
there?

There are six possible outcomes for the first roll. For each of these six outcomes there
are six outcomes on the second roll. Thus there are 6× 6 = 36 different ways the first two
rolls can turn out. Following this reasoning, there are 1296 = 6 × 6 × 6 × 6 rolls.

Next we need to calculate how many of these rolls are winners, i.e., include at least
one six. This at first seems daunting since the event ‘at least one six’ can happen so
many different ways. However a simple technique(*) involving a the "complementary" event
makes this easy. The ‘complementary’ event in this case is ‘no sixes’ and is somewhat
easier to analyze. The event ‘no sixes in four rolls’ can happen 625 = 5 × 5× 5 × 5 ways.
Thus slightly less than half the possible 1296 outcomes include no sixes and the remaining
671(= 1296 − 625) events must include at least one six. In the long run the player will
win slightly more often than not. More precisely, one would expect that the player would
win this game 51.8% of the time since

0.518 =
671

1296

(*) The difference between a trick and a technique is that you use a technique more than once.
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Notice that in any particular play of a game the outcome is unpredictable. Our intuition
is that with repeated plays over time the rules of the game will produce a pattern in
the outcomes. It is this pattern, or statistical regularity which is predictable and not the
individual outcomes, which remain subject to chance. If we flip a fair coin one hundred
times, our intuition is that about half of the flips will be heads and about half will be tails.
This expectation of a pattern that is reasonably based on the fact that each outcome is
equally likely.

In particular, if we have flipped a fair coin one hundred times and have observed one
hundred heads – a pattern we intuitively believe to be most unlikely – the chances of a head
on the next flip are still exactly one half. If the premise that coin is unbiased is correct, then
each flip, regardless of what has happened before, is just like every other flip and has the
same chance of turning up heads or tails.

A slightly different question is whether one hundred consecutive "heads" is sufficient
evidence to cause one to doubt the premise that the coin was fair in the first place. Since
this question deals with the pattern we expect to see from a fair coin, it is quite different from
the question of "what happens on the next flip?" Most reasonable people would probably
agree that a pattern of one hundred consecutive "heads" is ample evidence that the coin
is biased and therefore far more likely in general to turn up "heads" than not on any flip,
including the next one.

However, if one accepts the premise that the coin is unbiased, then the coin has an
equally likely chance of turning up heads or tails regardless of the history or absence of
history regarding prior flips. After all, the coin doesn’t "know" what has happened in the
past! The coin just comes up heads or tails. Nuances of this type often lead to mis-
application of conclusions in probability and statistics and serve as a cautionary warning to
both the beginner and the experienced practitioner.

1. Introduction 7



1. Introduction: Problems.

1. The coin-and-die game involves flipping a coin and rolling a die. The player first flips a coin
then rolls a die. If the coin is heads then the player wins and receives four times as many dollars
as spots on the die. If the coin is tails then the player loses and pays to the casino four dollars plus
as many dollars as there are spots on the die. Does the player or casino have the advantage in this
game?

2. In the game five rolls the player rolls a single die five times. If the player rolls an even number
at least three times, they win. If fewer than three even numbers are rolled, the player loses the
amount bet otherwise the casino pays the player the amount bet. Does the player or casino have
the advantage in this game or is each equally likely to win?

3. In the game chuck-a-luck three dice are rolled. The player picks a number between one and six
and bets that at least one of the three dice will show that number. If none of the three dice show
the selected number, then the player loses and the casino keeps the bet; otherwise the casino pays
at 4-3 odds (i.e., pays $4 for every $3 bet). A player reasons that he has one chance in six that any
one of the dice will show his number and so, since there are three dice, he has three chances in six
of winning. Since this is even odds the player bets on the game thinking in the long run he will
win more than he loses. Find the flaw in his reasoning.

4. Roll a pair of dice 105 times simultaneously. The table below lists the possible outcomes; record
the number of times you observe each outcome in the cell where the outcome is listed.

1&1 1&2 1&3 1&4 1&5 1&6

- 2&2 2&3 2&4 2&5 2&6

- - 3&3 3&4 3&5 3&6

- - - 4&4 4&5 4&6

- - - - 5&5 5&6

- - - - - 6&6

If the outcomes as listed in this table are equally likely, you would expect to see about five outcomes
(105÷21) in each cell. On the other hand, if the ”sequential” model of the 36 equally likely outcomes
is correct, then you would expect to see about 3 outcomes (105 ÷ 36) in the cells on the diagonal
and about 6 in the other cells. Which model is more consistent with your observations?
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5. Verify that if p is the chance of winning and if

x =
p

1 − p

are the odds of winning, then

p =
x

1 + x
.
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2. Basic Probability

In the course of studying games of chance a set of more-or-less intuitive "rules" about prob-
ability were discovered (or invented, depending on your philosophical perspective). These
fundamental rules provide the basic elements of probability theory. In this section we intro-
duce these basic rules and reformulate them using the language of unions, intersections,
and other operations on sets.

2.1. Example.

Suppose that an urn contains three red balls, four green balls, one white ball and twelve blue
balls, for a total of twenty balls altogether. Suppose that except for color the balls are all the
same. If one reaches into the urn and draws a ball at random what is the chance that ball is
red? What is the chance that the ball is blue? What is the chance that it is red or blue? A
ball that is not white?

Solution. Since there are three red balls out of twenty, clearly the chance of a red ball
being drawn is three out of twenty or 3

20
. Similarly, the chance of a blue ball is twelve out

of twenty or 3
5
.

The chance of a red or blue ball being drawn is equally simple. Since a total of fifteen
balls are either red or blue, it follows that the chance of a red or blue ball being drawn is
fifteen out of twenty or 3

5
.

Finally, the chance of drawing a ball that is not white is exactly the chance of drawing a
ball that is red (3 balls), green (four balls) or blue (twelve balls, i.e., nineteen out of twenty
or 19

20
.

This very simple example illustrates a number of fundamental principles.
First, when we say we have selected a ball "at random" we mean that each ball is

equally likely to be to be the one selected. We can imagine that the person selecting the
ball is blindfolded and thus cannot see the color of the selected ball – the only distinguishing
characteristic. If the balls were different in some additional way, such as size or texture,
then this difference might interfere with the random character of the selection: balls with a
rough texture or ones that are larger or smaller might be more likely to be selected. We
also would need to assure that the balls were mixed in some random fashion such as by
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complementary eventshaking the urn after inserting the balls – if all the blue balls were on top that would make
them more likely to be selected. Making sure that a selection of this type is truly "random"
can often be a difficult process and is beyond the scope of this course. The basic principle
is no particular ball is more likely to be selected than any other.

Second, we have computed the chances by counting the number of ways a particular
outcome can occur, then dividing by the total number of possible outcomes. Thus since
there are three red balls, there are three ways we satisfy the requirement "a red ball is
drawn." Since there are twenty balls altogether, there are twenty different ways of selecting
a ball. Similarly there are a total of fifteen balls that are either red or blue, hence fifteen
different ways a selecting a red or a blue ball out of a total of twenty possible ways.

Notice that the chance of drawing a white ball is one out of twenty or 1
20

= 5%. If
we have a 5% chance of drawing a white ball, then the chance of drawing a non-white ball
must be

100% − 5% = 95%.

We will almost always write probabilities as decimals rather than percentages, so we would
normally write the above as

Pr (non-white ball) = 1 − Pr (white ball)

= 1 − .05

= .95

This actually illustrates a fundamental principle. If E represents an event (say, drawing
a white ball) then we use EC for the complementary event (say, drawing a non-white ball).
Then

Pr (E) = 1 − Pr (EC)

where the complementary event EC is the event

EC = "E does not occur".

Counting is a fundamental part of many computations with probabilities. A slight
change to our example will help illustrate some basic counting principles.
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2.2. Example.

Suppose that an urn contains twenty balls numbered from one to twenty. The balls are also
colored as follows:

red numbers 1-3

green numbers 4-7
white number 8

blue numbers 9-20

Suppose that the balls are indistinguishable except for the numbers and colors painted on the
balls. A ball is selected at random. What are the chances that the ball is Green? That the
number on the selected ball is Even? That the both the number on the selected ball is even
and the ball is green. That the number on the selected ball is even or that the color is green?

Solution. Clearly the chance of a green ball is .2 and the chance of an even number is
0.5.

The event "even and green" consists of exactly two balls: number 4 and number 6.
Thus the chance of "even and green" is 0.1. The event "even or green" consists of balls
numbered

2, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20

or 0.6.

Using the language of sets we can rewrite the above is somewhat simpler form. First define
events as follows:

E1 = {Green ball is selected}
E2 = {ball with even number is selected}
E3 = {selected ball is Green and has an even number}
E4 = {selected ball is either Green or has an even number}

Using the language of sets,

E1 ∩ E2 = E3

and

E2 ∪ E2 = E4.
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If we count the ways each of the first three events can occur we get

E1 four ways

E2 ten ways
E3 two ways

Counting the ways that E4 can occur is easy using the above:

E1 occurs 4 ways

E2 occurs 10 ways

E3 = E1 ∩ E2 occurs 2 ways

To compute E4, "green or even", suppose we just add together the ways that E1 and
E2 can occur (14 ways). Then we have counted some outcomes twice, namely when
the selected ball is both green and even. These "double-counted" outcomes are exactly
E3 = E1 ∩E2, so if we deduct the double-counted outcomes from fourteen we get twelve,
exactly the number of ways that E4 can occur.

In particular, we conclude – at least in this example – that

Pr (E1 ∪ E2) = Pr (E1) + Pr (E2) − Pr (E1 ∩ E2). (2.1)

It seems reasonable that this would be true in general since the logic is based on counting
and probability is – intuitively – based on counting. To calculate the number of waysE1∪E2

can occur, count the ways E1 can occur, add the ways E2 can occur, then deduct the ways
that are double-counted, namely the number of ways E1 ∩ E2 can occur.

2.3. Definition.

If two events E1 and E1 have nothing in common, i.e., if

E1 ∩ E2 = φ

then we say that E1 and E2 are mutually exclusive or, in the language of sets, disjoint.

In the above example, the events

E1 = a red ball is selected

and
E2 = the number on the selected ball is at least ten

2. Basic Probability 13



are mutually exclusive. Since E1 can happen three ways and E2 can happen ten ways it
makes sense that

Pr (E1) = 0.15 and Pr (E2) = 0.5.

Since the events are mutually exclusive, it further makes sense that the joint event

E1 ∪ E2 = a red ball is selected or the number on the ball is at least ten

can happen thirteen ways, so

Pr (E1 ∪ E2) = 0.65

= 0.15 + 0.5

= Pr (E1) + Pr (E2).

In general we would expect that if E1 and E2 are mutually exclusive, then

Pr (E1 ∪ E2) = Pr (E1) + Pr (E2).

Notice that this is a special case of (1) since E1 ∩ E2 = φ and hence Pr (E1 ∩ E2) = 0.
A slightly more complex example expands on the above.

2.4. Example.

A game consists of rolling a fair die repeatedly until a ”two” or a ”three” appears, at which
time the game ends. What is the probability that game ends on the first roll? On the second
roll? On the third roll? On the nth roll? On an even-numbered roll?

Solution. Clearly the chances of a "two" or "three" on any given roll are one in three. Thus
on the first roll, the chance of a "two" or "three" appearing is one in three.

As we have seen, there are thirty-six different ways that the two rolls of a single die
can turn out. Of these eight satisfy the sequence "not "two" or "three" on the first roll, "two"
or "three" on second roll:"

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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stem diagramThus the chance that the first time a "two" or "three" is rolled being is on the second roll is
eight out of thirty-six or 2 out of nine.

Another way to think about this is the following. There are four ways that we can roll
"one, four, five or six" on the first roll. For each of these four ways, there are two ways to
roll a "two" or "three" on the second roll. So there are four times two or eight ways that the
first time a "two" or "appears" is on the second roll. Since there are a total of thirty-six ways
the roll of a single die can turn out, the chance that the first "two or "three" appears on the
second roll is

number of ways first two or three can be on second roll

total number of outcomes
=

8

36
=

2

9

We can create a graphical representation of the above reasoning with a “stem dia-
gram." The first branches or stems on the diagram represent the first step: rolling a "one,
four five or six." Branching out from each of these initial four stems are two more stems,
representing the ways that the second step – rolling a "two" or "three" – can occur. Thus
the stem diagram starts with four stems, each of the initial four stems has two sub-branches
growing of it for a total of eight endpoints.
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Stem Diagram for game ending after two rolls

The second approach gives a way to find the chance that the first "two" or "three"
occurs on the third roll. There are four ways of not rolling a "two" or "three" on the first roll.
For each of these ways, there are four ways of not rolling a "two" or "three" on the second
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roll. Thus there are a total of sixteen ways of not rolling a "two" or "three" on the first two
rolls. For each of these sixteen ways, there are two ways of rolling a "two" or "three" on the
third roll. So the total number of outcomes that satisfy "first time a "two" or "three" is rolled
is the third roll" is

4 × 4 × 2.

On the other hand, there are

6 × 6 × 6 = 196

different outcomes when a single die is rolled three times in succession. Thus the chances
that the first time a two or three is rolled happens on the third roll is

42 × 2

63

The stem diagram is three branches long. The first roll has four stems; each of those initial
four grows four new stems. The final row is represented by two more stems growing off of
each of the initial sixteen.
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Stem Diagram for game ending after three rolls
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geometric seriesExtending this approach, then, it is reasonable that the chances that the first time a "two"
or "three" is rolled happens on the nth roll is

4n−1 × 2

6n
=

(
2

3

)n−1 1

3

To find the chances that we first roll a "two" or "three" on an even-numbered roll we
need to compute an infinite sum:

Pr (first "two" or "three" on even-numbered roll) =

=
∑

k odd

2

3

k−11

3

=

∞∑

n=1

2

3

2n−1 1

3

=

(
2

3

)−1 1

3

∞∑

n=1

(
4

9

)n

=
1

2

(
4
9

1 − 4
9

)

=
2

5

We have used the formula for summing a geometric series from Calculus

∞∑

n=1

rn =
r

1 − r

where −1 < r < 1. Also, when we wrote

Pr (first "two" or "three" occurs on even-numbered roll) =
∑

k odd

2

3

k−11

3

we made the assumption that we could calculate the probability of mutually exclusive events
by summing the probabilities. More generally, we assumed that if {En} is an infinite col-
lection of pair-wise mutually exclusive events, then

Pr (∪En) =
∑

n

Pr (En)
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This latter is an "infinite" version of our earlier intuitive observation that if E1 and E2 are
mutually exclusive then

Pr (E1 ∪ E2) = Pr (E1) + Pr (E2).
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2. Basic Probability: Problems.

1.
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Cardano, Gerolamo

Pascal, Blaise

Fermat, Pierre

Huygens, Christian

3. The Multiplication Rule.

With this section we begin a more systematic – and axiomatic – approach to the basic
principles of probability. The examples we have carried out thus far all involved some
aspect of counting. One thread that runs through many games of chance – and all of those
we have thus far considered – involves counting how many ways equally likely outcomes
can occur.

3.1. Axiom. Cardano Counting Axiom.

If there are n equally likely outcomes and if m of those satisfy a certain condition, then the
probability of that condition is m

n
.

Almost all of our examples thus far have made implicit use of this basic counting axiom.
This was first formulated in 1525 in a book written by an Italian physician named Gerolamo
Cardano. Cardano’s interest arose from his obsession with gambling. Using this axiom
Cardano became the first to compute a theoretical (as opposed to empirical) probability.

The actual impact of Cardano’s ideas was minimal – his book was not even published
until 1663! The mathematical community largely ignored the questions that posed, seeing
them as an example of dissolute behavior.

Nearly a century later questions about events occuring by chance finally captured the
imagination of the mathematical community. The ideas of Blaise Pascal and Pierre Fermat,
worked out in an exchange of letters starting in 1654, laid the foundation of what we today
call probability theory. These ideas were formalized in 1657 by Christian Huygens in De

Rationciniis in Aleae Ludo (Calculations in Games of Chance). The actual problem that
led to the correspondence between Pascal and Fermat dealt with, unsurprisingly, a game
of chance (see problem one at the end of this section).

Card games provide an almost endless supply of examples of games of chance and
associated counting principles. A poker deck (sometimes also called a bridge deck) con-
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sists of 52 cards separated into four suits as follows:

Spades Hearts Diamonds Clubs

♠ ♥ ♦ ♣
King King King King

Queen Queen Queen Queen
Jack Jack Jack Jack

10 10 10 10
9 9 9 9
8 8 8 8

7 7 7 7
6 6 6 6

5 5 5 5
4 4 4 4

3 3 3 3
2 2 2 2

Ace Ace Ace Ace

The backs of all the cards are the same. The front of the card contains symbols that denote
the suit (spade ♠, heart ♥, diamond ♦ or club ♣) and the denomination. Traditionally the
"king," "queen" and "jack" are stylized pictures of the faces of medieval royalty and hence
are called "face cards." The remaining cards have spades, hearts, diamonds or clubs in the
same number as the denomination of the card. The card corresponding to "one" is called
an "ace" and in many games is the highest rather than the lowest card. Finally Spades and
Clubs have black symbols on the front of the card, Hearts and Diamonds have red symbols.

3.2. Example.

A game consists of selecting a card at random from a poker deck. What are the chances of
selecting a face card?

Solution. Since the backs of the cards are indistinguishable, we can imagine that each
card is equally likely to be selected. Thus there are 52 possible outcomes. Since there are
12 face cards, then the Cardano Counting Axiom tells us that the chances of selecting a
face card are

12

52
=

1

4
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A slightly more complex game is the following.

3.3. Example.

A game consists of rolling a fair die and selecting a card random from a poker deck. What
are the chances that outcome consists of a rolling a ”2” or ”3” and then selecting an Ace?

Solution. We first calculate the total number of possible outcomes when one rolls a die
and selects a card at random. To do this we extend the notion of a stem diagram from the
previous section. The roll of a die can turn out any one of six ways. For each of these six
ways, there are 52 different ways of selecting a card from a poker deck. The resulting stem
diagram has 6 initial branches, each of which has 52 sub-branches. This results in a total
of 6 × 52 = 312 possible outcomes.

The particular condition we need to satisfy consists of a roll of a "2" or "3" followed by
an Ace. Again a stem diagram helps to calculate the number of ways this can happen. A
roll of "2" or "3" can happen two ways. Since there are four aces in the poker deck, an ace
can be selected in four ways. Thus the stem diagram for the particular condition starts out
with two branches, each of which has four sub-branches for a total of 8 branches. Thus we
can accomplish the particular condition of this game in 8 ways.

Then the Cardano Counting Axiom implies that the probability is

8

312
= 0.256.

As games get more complex it becomes less and less practical to construct stem
diagrams. For example, a poker hand consists of five cards selected at random from a
poker deck. It turns out that there are 2,598,960 different such hands. Clearly we need a
more systematic way of calculating than the visual approach afforded by a stem diagram.
The answer to this is embodied in the Multiplication Rule.
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3.4. Definition. Multiplication Rule.

Suppose that an outcome can be accomplished in k ordered steps. If step one can be
accomplished in n1 ways, step two in n2 ways and so on, then the ordered sequence

{step 1, step 2, . . ., step k}

can be accomplished in
n1 × n2 × · · ·nk

ways.

The multiplication rule formalizes the notion of a stem diagram. The idea is that the
first step gives rise to n1 branches, each of which has n2 sub-branches and so on.

3.5. Example.

In how many ways can five cards be selected at random in sequence and without replacement
from a poker deck?

Solution. When we say "in sequence" we mean that the selection

( 3 ♦, J ♣, A ♠, 5 ♥, Q ♠ )

is different from the selection

( J ♣, 3 ♦, A ♠, 5 ♥, Q ♠ )

in other words, the order in which the cards were selected matters.
The first card can be selected in n1 = 52 ways. Once the first card is selected, there

are only 51 cards left, so the second card can be selected in n2 = 51 ways. Reasoning in
a similar manner, the five cards can be selected in

52 × 51 × 50 × 49 × 48 = 311, 875, 200

ways.
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3.6. Example.

Suppose a password on a computer system must consist of 5 characters: three letters followed
by two numbers. The computer system can’t tell the difference between upper and lower case
letters and letters may be repeated. How many different passwords are possible? Suppose
that the numbers may repeat but the letters may not? How many passwords contain the
letters RAY?

Solution. Each of the first three characters can be selected in any one of 26 ways, while
the last two can be selected in any one of ten ways. Thus the total number of possible
passwords is

26 × 26 × 26 × 10 × 10 = 1, 757, 600

If the letters may not repeat, then there are 26 ways to choose the first letter, 25 to
choose the second and 24 to choose the third, so the number of different ways is

26 × 25 × 24 × 10 × 10 = 1, 560, 000

The number of passwords satisfying the particular condition that they contain the let-
ters RAY can also be calculated using the multiplication rule. In this case, there are three
ways of choosing the first letter from {R, A, Y}. Once the first letter is chosen, there are
two ways of choosing the next letter and only one way of choosing the final letter. Thus the
number of passwords that contain the letters RAY is

3 × 2 × 1 × 10× = 600

In the previous example suppose that we wanted to carry out the selection in a way
that assured that each letter had an equal chance of being selected. To do this we might
write each letter on a slip of paper, put the 26 slips in an urn, shake up the urn then reach
in and select a letter. If we permit the letters to repeat, then we would replace the selected
letter, re-agitate the urn, and select the second letter, and so on.

On the other hand, if the letters did not repeat, we would not replace the letter selected
on the first drawing, would not replace the letter selected on the second drawing, and so
on.

This methodology for randomly selecting the letters gives rise to the notion of selec-
tion with replacement and without replacement. If you have N distinguishable objects,
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such as N = 26 letters, then selecting k of the objects "with replacement" means that the
objects may repeat, i.e., that a selected object is returned to pool before the next selection
takes place. Selecting k objects "without replacement" means that the pool of possible ob-
jects is diminished by one after each choice, i.e., that no object may repeat in the selection.

The multiplication rule enables one to count the number of ordered selections, both
with and without replacement. In the latter case, factorial notation is useful.

3.7. Definition. Factorials.

If n is a positive integer then the factorial of n is the number

n! = n(n− 1)(n− 1) · · · (2)(1)

For example,

6! = 6 × 5 × 4 × 3 × 2 × 1 = 720

With this notation in hand, the following two counting principles are special cases of the
multiplication rule.

3.8. Definition. Selection with replacement.

The number of ordered selections of size k from N objects where objects may be selected
more than once is

Nk

3.9. Definition. Selection without replacement (permutations).

The number of ordered selections of size k from N objects where no object may be selected
more than once is

N(N − 1)(N − 1) · · · (N − k+ 1) =
N !

(n− k)!

Note that if one selects without replacement, then the number of selections k cannot
be larger than the number of objects N . However, if one selects with replacement then
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there is no theoretical limit on the number of objects k that could be selected.
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3. The Multiplication Rule.: Problems.

1. Two people, A and B, agree to play a series of fair games until one person has won six games.
They have each wagered the same amount of money and whoever is the first to win six games will
collect the entire amount wagered. Suppose, however, that they are unable to complete their wager
and must terminate early, at a point when person A has won five games and person B has won
three games. How should the wager be fairly divided?
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4. Combinations.

In a poker hand what matters is the five cards you are dealt, not the order in which they
were dealt to you. This is true of many games of chances and of many applications of
probability: what matters is not the order of the outcomes but which outcomes occured. As
usual, an example can help illuminate more basic principles.

4.1. Example.

A poker player has been dealt five cards:

A♠, A♥, Q♣, 4♦, 2♦.

In how many different ways can he arrange these five cards from left to right in his hand?

Solution. This is a simple application of permutations. There are 5! = 120 ways of
selecting five cards, in order and without replacement, from the five cards in his hand. This
is exactly the number of ways that the player can arrange the five cards in order, from left
to right, in his hand.

In the last section we saw that there are

52!

(52 − 5)!
= 311, 875, 200

ways that five cards can be selected, in order, from a poker deck. When a poker player is
dealt five cards the deal does occur without replacement. However, even if the cards are
dealt in a particular order the player doesn’t care what order the cards are dealt, just which
cards are dealt. for example, the hands

A♠, A♥, Q♣, 4♦, 2♦

and
A♥, A♠, Q♣, 4♦, 2♦

are the "same" even though the first and second cards are reversed in order. Both hands
constitute the poker hand "a pair of Aces." Thus many of the 311 million ordered hands
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counted above are actually the "same" poker hand since the order in which the cards are
dealt is irrelevant to the poker player.

The poker player wants to know, for example, how likely are various hands such as
those listed below?

one pair two of the same denomination and three not matching

three-of-a-kind three matching cards and two non-matching
full house one pair and one three-of-a-kind

flush five in the same suit

There are, of course, other possible poker hands; these are just listed as examples.
As a preliminary step, we will calculate the number of possible poker hands.

4.2. Example. Example Poker Hands.

A poker hand consists of five cards selected at random and without replacement from a deck
of 52 cards. How many hands are there if the order matters? How many if the order does
not matter?

Solution. As we have seen, if the order in which the cards are selected matters then there
are

52!

(52 − 5)!
= 311, 875, 200

possible hands. Next we will use the multiplication rule and example one to calculate this
number in a different way.

Let x be the number of possible hands if the order does not matter. Now each of these
x hands can be ordered in 5! = 120 different ways by the first example in this section.
Thus we can think of the task of constructing all of the "ordered" five card hands as taking
two sequential steps:
Step 1. Select an unordered hand of five cards;
Step 2. Order the selected hand of five cards.

The first step can happen in x ways, the second step can happen in 5! ways. Thus by
the multiplication rule the total number of ordered hands must be

x× 5!

This is a second way of finding the number of ordered hands and so must equal the first
way, i.e.,

x× 5! =
52!

(52 − 5)!
.
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Thus, solving for x,

x =
52!

(52 − 5)!5!
= 2, 598, 960.

This latter number is the number of five-card poker hands where the order in which the
cards were dealt does not matter.

The preceding example generalizes in a natural way.

4.3. Definition. Combinations

The number combinations of n things taken k at a time is

(
n

k

)

≡ n!

(n− k)!k!

4.4. Theorem. Combination Rule.

The number of combinations of n things taken k at a time is exactly the number of un-
ordered selections of k objects from n distinct objects where no object can be selected more
than once.

Proof. The proof follows exactly the argument in the preceding example. The number of
ordered selections of k objects from n distinct objects where no object can be selected
more than once is

n!

(n− k)!

Alternatively, let x be the number of un-ordered selections. Each of these un-ordered
selections can be arranged in k! different ways. Thus all of the ordered selections can be
constructed in a two step process, first selected an un-ordered group of k objects, then
order it. The multiplication rule says that these two tasks together can be done in

x× k!

ways.
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These two different ways of calculating the number of ordered samples must be equal,
so

n!

(n− k)!
= x× k!

which gives on solving for x

x =
n!

(n− k)!k!
=

(
n

k

)

.

4.5. Example. Full House in Poker.

A full house in poker consists of a pair and three-of-a-kind in one hand. The order in which
the cards are dealt does not matter. How many different poker hands result in a full house?

Solution. The multiplication rule can be used to solve this problem. Dividing the problem
of "constructing" a full house up into tasks we might consider:
Task 1. Select the denomination for the pair.
Task 2. Select two cards of that denomination to be in the hand.
Task 3. Select the denomination for the three-of-a-kind.
Task 4. Select the three cards of that denomination to be in the hand.

Then Task 1 can be accomplished in
(13

1

)
ways and Task 2 can be accomplished in

(4
2

)

ways. Task 3 can be accomplished in
(12

1

)
(there are only 12 denominations left to choose

from since we have already selected one for the pair). Finally task for can be accomplished
(4
3

)
ways. Thus the total number of full houses is:

(
13

1

)(
4

3

)(
12

1

)(
4

3

)

.
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4.6. Example. Arranging symbols.

Suppose that we have n+ 1 red balls and r blue balls.
(a) How many different arrangements are there of the n+ r + 1 balls?
(b) How many different arrangements are of the n + r + 1 balls where the first and last

balls blue?

Solution. In both parts we need select the r positions in which we will place the blue
balls. For part (a) there are n + r + 1 positions that are possibilities for the blue balls so
we can do this in

(
n+ r + 1

r

)

ways.

For (b), the first and last positions are fixed with blue balls, so we have n+ r− 1 positions
in which to place the r red balls. Thus the number of ways in which we can do this is

(
n+ r − 1

r

)

ways.

A slightly different problem involves distributing indistinguishable balls between distin-
guishable urns. This kind of problem is quite important in particle physics, for example,
where the “balls" represent elementary particles and the “urns" represent partitions of the
three-dimensional space. Different particles are distributed in different ways, depending on
the physical properties of the particle, but in all cases it is necessary to solve problems like
the following example.
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4.7. Example.

Suppose that you have twenty balls to distribute among five urns. After the distribution,
the kth urn will have mk balls in it. The numbers (m1,m2,m3,m4,m5) are called the
occupancy numbers since mk counts how balls occupy the kth urn. Since there are twenty
balls, these numbers must satisfy 0 ≤ mk ≤ 20 and

5∑

k=1

mk = 20.

One possible set of occupancy numbers is pictured below.

In how many ways can a particular set of occupancy numbers (m1,m2,m3,m4,m5) occur?

Solution. There are five tasks to accomplish.

Task 1. Choose m1 balls from the original 20 and place them in Urn 1.

Task 2. Choose m2 balls from the remaining 20 − m1 balls and place them in
Urn 2.

Task 3. Choose m3 balls from the remaining 20 − m1 − m2 balls and place
them in Urn 3.

Task 4. Choose m4 balls from the remaining 20−m1 −m2 −m3 balls and place
them in Urn 4.

Task 5. Choose m5 balls from the remaining 20−m1 −m2 −m3 −m4 balls and
place them in Urn 5.
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From this we can calculate the number of ways each task can be done.

Task 1.

(
20

m1

)

=
20!

(20 − m1)!(m1)!

Task 2.

(
20 − m1

m2

)

=
(20 − m1)!

(20− m1 − m2)!(m2)!

Task 3.

(
20 − m1 − m2

m3

)

=
(20 − m1 − m2)!

(20− m1 − m2 − m3)!(m3)!

Task 4.

(
20 − m1 − m2 − m3

m4

)

=
(20 − m1 − m2 − m3)!

(20− m1 − m2 − m3 − m4)!(m4)!

Task 5.

(
20 − m1 − m2 − m3 − m4

m5

)

=
(20 − m1 − m2 − m3 − m4)!

(20− m1 − m2 − m3 − m4 − m5)!(m5)!

Multiplying these together, canceling out like terms and using the fact that

5∑

k=1

mk = 20.

gives that the number of ways is

20!

(m1)!(m2)!(m3)!(m4)!(m5)!

The general statement of the above is the following example.
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Maxwell-Boltzmann statistics

4.8. Example.

Suppose that one has r balls and distributes them among n urns. If the mi is the ”occupancy
number” for the ith urn then

m1 +m2 + · · · +mn = r

and 0 ≤ mi ≤ r for each i. A particular set of occupancy numbers

m1,m2, · · · ,mn

represents
r!

m1!m2!m3! · · ·mn!

of the total nr outcomes.

While "balls in urns" are a useful way of phrasing this problem, similar problems arise
in statistical mechanics. In this setting a region is subdivided into a large number (n) of
smaller sub-regions and the occupancy number corresponds to the distribution of r ele-
mentary particles into these regions. There are various assumptions that one might make
about the liklihood of different distributions of the particles, each with different physical con-
sequences. For example if all nr outcomes are equally likely then the probability of any
particular set of occupancy numbers is

r!

m1!m2!m3! · · ·mn!
n−r

and physicists speak of the Maxwell-Boltzmann statistics. While this seems intuitively at-
tractive, it turns out that this assumption does not apply to any known collection of particles.
Thus, for elementary particles, not all of the nr outcomes are equally likely!

The occupancy numbers
m1,m2, · · · , mn

must solve the equation
m1 +m2 + · · · +mn = r. (4.1)

and satisfy 0 ≤ mi ≤ r for each i. It is possible to show (see the problems) that number
of different solutions

m1,m2, · · · , mn
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Bose-Einstein statistics

Fermi-Dirac statistics

to equation (4.1) satisfying 0 ≤ mi ≤ r for each i is

(
n+ r− 1

r

)

.

If one assumes that each of the occupancy numbers are equally likely (rather than each
of the individual nr distributions of particles among the regions), then it follows that the
chance of any particular occupancy number is

(
n+ r − 1

r

)−1

.

Physicists would call this assumption the Bose-Einstein statistics. It turns out that this
assumption can be used to model certain elementary particles such as photons.

If one assumes that the occupancy numbers mi can be at most one (no two particles
in the same region), and that the corresponding solutions to (O) are equally likely, then
physicists refer to the resulting physical model as the Fermi-Dirac statistics. This model
applies to, for example, protons, electrons and neutrons. In this case any particular set of
occupancy numbers has probability

(
n

r

)−1

since this corresponds to the problem of selecting the r positions for the particles from the
n partitions.

From a mathematical perspective, there is no reason to prefer one model over another.
In particular, absent physical observations, there is no mathematical reason to suspect
that photons and neutrons, for example, would follow different probabilistic models. From
the standpoint of probability, the point is that combinations have applications ranging from
simple card games to statistical mechanics.
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4. Combinations.: Problems.

1. Show that the number of distinct solutions

m1, m2, · · · , mn

to equation (O) satisfying 0 ≤ mi ≤ r for each i is

(
n + r − 1

r

)

.

Hint. Represent the urns as containers with bars separating each container; for example six bars
represent five containers:

| · | · | · | · | · |

Then n + 1 bars represent the n containers. Now represent the balls as stars and distribute the
balls among the containers. For example

| ∗ ∗|| ∗ ∗ ∗ | ∗ ||

might represent n = 5 urns, r = 6 balls and occupancy numbers of

2, 0, 3, 1, 0.

2. A student attempts to calculate the number of full houses with the following set of tasks:
Task 1. Select the denominations that will appear in the hand.
Task 2. Select one of those two to be the pair.
Task 3. Select two cards of that denomination to be in the hand.
Task 4. Select the three cards of the remaining denomination to be in the hand.

This results in an answer of (
13

2

)(
2

1

)(
4

2

)(
4

1

)

which appears to be different from the answer in the text. Comment.
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5. Probability Spaces

In the previous sections we calculated how likely the outcomes of various games might be
and examined some consequences of counting with respect to probability. In each case
we were able to define or list all possible outcomes – the universe – and then calculate
the liklihood of any individual outcome. From a mathematical perspective, the universe of
all possible outcomes, Ω, is a set. Individual outcomes ω are elements of the universe,
ω ∈ Ω. A subset of E ⊆ Ω is called an event. In this context, then, individual outcomes ω
are singleton events {ω}.

In previous sections we were satisfied with an intuitive understanding of probabilities
and events based on counting. In this section we give this intuitive approach a more ab-
stract and axiomatic – and hence more mathematical – foundation.

5.1. Definition.

Let Ω be a set and let E be a non-empty collection of subsets of Ω; the pair (Ω, E) is said
to be a σ-algebra if
(i) E ∈ E implies Ec ∈ E;
(ii) whenever {E1, E2, · · ·} ⊂ E then both

⋂

n

En ∈ E and
⋃

n

En ∈ E.

We can think of the elements ω ∈ Ω as being the simple outcomes of a random experiment
and the subsets E as being the collection of events whose probabilities we can compute.

5.2. Proposition.

If (Ω, E) is a σ-algebra, then
(i) φ ∈ E
(ii) Ω ∈ E
(iii) if E1 and E2 are in Ω then both E1 ∪ E2 ∈ Ω and E1 ∩ E2 ∈ Ω.

Proof. Since E is a non-empty collection, there is at least one set E ∈ E. Set E1 = E
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and, for n ≥ 2, set En = Ec. Then

Ω =
⋃

n

En ∈ E

by (ii). Thus Ω ∈ E. It then follows from (i) that

φ = Ωc ∈ E.

For (iii), set En = E2 for n ≥ 3. Then

E1 ∩ E2 =
⋂

n

En and E1 ∪ E2 =
⋃

n

En

showing (iii).

5.3. Definition.

Let (Ω, E) be a σ-algebra and let
Pr : E → R

be a real-valued function defined on E. Then Pr is a probability function and the triple
(Ω, E,Pr ) is a probability space provided that
(i) 0 ≤ Pr (E) ≤ 1 for all E ∈ E;
(ii) Pr (Ω) = 1; and
(iii) if {En} is a pair-wise disjoint collection of sets in E then

Pr (∪nEn) =
∑

n

Pr (En).
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5.4. Proposition.

Let (Ω, E,Pr ) be a probability space. Then
(i) Pr (φ) = 0
(ii) If E1 and E2 are disjoint sets in E then

Pr (E1 ∪ E2) = Pr (E1) + Pr (E2)

(iii) If E1 and E2 are any sets in E then

Pr (E1 ∪ E2) = Pr (E1) + Pr (E2) − Pr (E1 ∩ E2)

Proof. Parts (i) and (ii) follow in obvious ways from Proposition 3.2 and the definitions. For
part (iii) first observe that if

E1 \ E2 ≡ {ω ∈ Ω|ω ∈ E1 and ω 6∈ E2}

then E1 \ E2 and E2 are disjoint. Thus from (ii)

Pr ((E1 \ E2) ∪ E2) = Pr (E1 \ E2) + Pr (E2).

Note that

(E1 \ E2) ∪ E2 = E1 ∪ E2

and hence

Pr (E1 ∪ E2) = Pr (E1 \ E2) + Pr (E2)

or

Pr (E1 ∪ E2) − Pr (E2) = Pr (E1 \ E2)

In an exactly similarly fashion

Pr (E1 ∪ E2) − Pr (E1) = Pr (E2 \ E1).

Now the three sets

E1 \ E2, E2 \ E1 and E1 ∩ E2
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are disjoint and

E1 ∪ E2 = (E1 \ E2) ∪ (E2 \ E1) ∪ (E1 ∩ E2).

From this and the above

Pr (E1 ∪ E2) = Pr (E1 \ E2) + Pr (E2 \ E1) + Pr (E1 ∩ E2)

= Pr (E1 ∪ E2) − Pr (E2) + Pr (E1 ∪ E2) − Pr (E1) + Pr (E1 ∩ E2)

Rearranging gives (iii).

Thus from this minimal abstract structure we can deduce the intuitive characteristics
of probability that we inferred from examples on counting. Even more striking, this minimal
structure provides a framework for deducing results about limits of sequences of events.
The theorem below is a kind of ‘continuity’ theorem expressed in terms of events and will
useful later as we consider various real-valued functions defined on probability spaces.

5.5. Theorem.

Let (Ω, E,Pr ) be a probability space.
(i) If {En} are events in E and if E1 ⊆ E2 ⊆ E3 ⊆ · · · then

Pr

(∞⋃

n

En)

)

= lim
N→∞

Pr (EN)

(ii) If {En} are events in E and if E1 ⊇ E2 ⊇ E3 ⊇ · · · then

Pr

(∞⋂

n

En)

)

= lim
N→∞

Pr (EN)

Proof. For (i) set A1 = E1 and, for n > 1 set

An = {ω ∈ Ω : ω ∈ En and ω /∈ En−1}
= En \ En−1.

5. Probability Spaces 41



The sets {An} are pair-wise disjoint and

N⋃

n=1

An =

N⋃

n=1

En

= EN .

note that this further implies that

∞⋃

n=1

An =
∞⋃

n=1

En.

Thus

Pr

(∞⋃

n

En)

)

= Pr

(∞⋃

n

An)

)

=
∞∑

1

Pr (An)

= lim
N→∞

N∑

n=1

Pr (An)

= lim
N→∞

Pr

(
N⋃

n=1

An

)

= lim
N→∞

Pr (EN)

as desired.
For (ii) note that

Ec
1 ⊆ Ec

2 ⊆ Ec
3 · · ·

and that (
⋂

n

En

)c

=
⋃

n

Ec
n.

Thus
lim
N→∞

Pr (EN) = lim
N→∞

(1 − Pr (Ec
N)

= 1 − lim
N→∞

Pr

(
N⋃

n=1

Ec
n

)

= 1 − Pr
(
(∩∞

n=1En)
c
)

= Pr (∩∞
n=1En)
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as desired.
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5. Probability Spaces: Problems.

1. A Game consists of rolling a fair die until the second three appears. Calculate the probability

that it takes more than 8 rolls for the second three to appear.
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6. Independence and Conditional Probability

The multiplication rule provides a formalized way to think through certain kinds of calcula-
tions. The notions of independence and conditional probability are, in some ways, formal
generalizations of the multiplication rule. A couple of simple examples will help to illustrate
the basic concepts.

6.1. Example.

Suppose that an urn contains r crimson balls numbered 1, 2, · · · , r and n white balls num-
bered 1, 2, · · · , n. A ball is selected at random from the urn and both the number and the
color are noted.
(a) What are the chances that the color is crimson?
(b) What are the chances that the number is a ”1?”
(c) What are the chances that the color is crimson and the number is a ”1?”
(d) If we observe the ball is crimson, what are the chances the number is a ”1?”

Solution. For (a)-(c) the total number of balls is r + n and the chance of drawing any
single ball is therefore 1

r+n
. Thus we can apply the Cardano Counting Principal to each of

(a)-(c). For (a) there are r crimson balls each of which are equally likely so the probability
of a crimson ball is r

r+n
. Similarly, there are two balls with the number "1" so the probability

of drawing a ball with the number "1" is 2
r+n

. There is exactly one crimson ball numbered

one, so the probability of drawing a crimson ball with the number "1" is 1
r+n

.

For part (d) the number of possible balls is reduced to r since we know we have
selected a crimson ball. Of the r crimson balls, exactly one has the number "1" so the
probability of drawing a "1" given that we have selected a red ball is 1

r
. Note that this

answer is the same as that in (b) only in the case r = n. In particular, knowing the color
of the ball helps us predict the number on the ball.

Our next example is somewhat more complex in that involves successive draws from
the urn without replacement.
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6.2. Example.

An urn contains 10 balls, of which four are red, four are blue and two are white. Two balls
are selected from the urn in sequence and without replacement.
(a)) What are the chances that both balls are red?
(b)) What are the chances that the second ball selected is red and the first one is not red?
(c)) What are the chances that the second ball is red?
(d)) If we know that the first ball selected is red, what are the chances that the second ball

selected is red?

Solution. This problem consists of two tasks: selecting the first ball, then selecting the
second ball. Depending on the outcomes and what we are given about the conditions, we
can compute the probability of each task under the varying circumstances.

For (a), the number of ways of selecting the first ball – with no restrictions on color –
is one in ten. After the first ball is selected, there are only nine balls left, so the number of
ways of selecting the second ball is nine. Thus, by the multiplication rule, the total number
of ways we can select two balls without replacement is 10 × 9 = 90 (the number of
permutations of ten things taken two at a time).

First, consider the desired outcome of "both balls red." In this case, the first task is
to select a red ball. There are four red balls initially, so there are four ways that this can
be done. The second task is to select the second ball and have the second ball also be
red. After the first selection, there are only three red balls left, so there are three ways of
accomplishing the second task. Thus the total ways of selecting two red balls is 4×3 = 12.

From this, applying the Cardano Counting Axiom, the chances of selecting two red
balls in sequence and without replacement is

4 × 3

10 × 9
=

2

15
.

In exactly a similar way we can calculate (b) and so find that the chances that the first
is not red and the second is red are

6 × 4

10 × 9
=

4

15
.

The previous two parts describe exactly the way in which (c) can occur. If

E1 = { draw a red ball, followed by a red ball}
E2 = { draw a non-red ball, followed by a red ball}
E = { draw a red ball on the second draw}
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Then
E1 ∪ E2 = E and E1 ∩ E2 = φ

and so
Pr (E) = Pr (E1 ∪ E2)

= Pr (E1) + Pr (E2)

=
2

15
+

4

15

=
2

5

For (d),we are given that the first ball selected is red so the first selection can be done
in four ways. Once the first ball is selected, there are nine ways to select the second ball,
so there are a total of 4 × 9 = 36 was of selecting a red ball on the first draw (with the
color of the second draw not specified). As we saw in (a) there are twelve ways that two
red balls can be selected. Thus the chances that the second ball is red given that the first
ball is red are

12

36
=

1

3
.

In calculating (d) we counted the number of ways of selecting two red balls in succes-
sion (12) and the number of ways of selecting a red ball followed by a ball of any color (36).
In particular if

A = {two red balls} and

B = {red ball on first draw, any color on the second draw}

then with no fore-knowledge of how the first draw turned out

Pr (A) =
12

90
and Pr (B) =

36

90
.

Notice that (
12
90

)

(
36
90

) =
12

36

= Pr

(
red on second draw given that

a red was selected on the first draw

)

In particular since A ∩ B = A in this particular example,

Pr (A given B) =
Pr (A ∩ B)

Pr (B)
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The above formula, which makes intuitive sense in terms of counting principles, is the basis
for the general definition of conditional probability.

6.3. Definition.

If A and B are events with Pr (B) 6= 0, then the probability of A given B, denoted by
Pr (A|B) is the numberconditional probability

Pr (A|B) =
Pr (A ∩B)

Pr (B)

In our first example, ifA is the even "draw a ball numbered ’1’" andB is the even "draw
a crimson ball" then we calculated

Pr (A) =
2

r + n
, Pr (B) =

r

r + n
and Pr (A ∩ B) =

1

r + n
.

From this, applying the definition,

Pr (A|B) =
Pr (B ∩ A)

Pr (B)

=

1
r+n
r

r+n

=
1

r

which agrees with the answer we deduced directly in the example.
In our second example, if A is the event "draw a red ball on the second draw" and B

is the event "draw a red ball of the first draw" then we have shown that

Pr (A) =
2

5
, Pr (B) =

2

5
and Pr (A ∩ B) =

2

15

and so

Pr (A|B) =
Pr (A ∩ B)

Pr (B)

=
2
15
2
5

=
1

3

48 November 18, 2017



In particular,
Pr (A|B) 6= Pr (A)

i.e., knowing what happened on the first draw helps to predict what might happen on the
second draw. This makes sense since we are drawing without replacement: if we know
that we drew a red ball on the first draw, then there are fewer red balls to choose from on
the second draw, hence the chances of a red ball on the second draw are diminished.

6.4. Example.

Suppose an unbiased coin is flipped three times. What is the probability that exactly two flips
are heads given that at least one is heads?

Solution. Let A be the event "two heads in three flips" and B be the event "at least one
head in three flips." Then A can happen exactly three ways:

HHT

HTH

THH

each of which have probability
(
1
2

)3
. Thus

Pr (A) =
3

8
.

For B it is easier to calculate the complementary event:

BC = {no heads in three flips}.
Since BC is exactly "three tails in three flips"

Pr (B) = 1 − Pr (BC) = 1 −
(

1

2

)3

=
7

8

Finally, A ∩B = A and so

Pr (A|B) =
Pr (A ∩ B)

Pr (B)

=
3
8
7
8

=
3

7
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An important consequence of the definition of conditional probability is the following.

6.5. Theorem. Bayes’ Rule.

Let (Ω, E,Pr ) be a probability space and let A,B ∈ E. If Pr (A) 6= 0 6= Pr (B) then

Pr (A|B) =
Pr (A)Pr (B|A)

Pr (B)
.

Proof. It follows from the definition that

Pr (A ∩B) = Pr (A|B)Pr (B)

and

Pr (A ∩ B) = Pr (B|A)Pr (A).

Thus

Pr (A|B) Pr (B) = Pr (B|A)Pr (A)

or

Pr (A|B) =
Pr (A)Pr (B|A)

Pr (B)
.

6.6. Corollary.

Let (Ω, E,Pr ) be a probability space and let A,B ∈ E. If Pr (A) 6= 0 6= Pr (B) then

Pr (A|B) =
Pr (A)Pr (B|A)

Pr (A)Pr (B|A) + Pr (AC)Pr (B|AC)
.

50 November 18, 2017



Proof. Note that
B = B ∩

(
A ∪AC)

)

= (B ∩A)) ∪
(
B ∩ AC

)
.

Since B ∩A and B ∩ AC are disjoint,

Pr (B) = Pr (B ∩A) + Pr (B ∩ AC)

= Pr (A)Pr (B|A) + Pr (AC) Pr (B|AC).

The result now follows from Bayes’ Rule.

In exactly the same manner we can deduce a slightly more general version of the above.

6.7. Corollary.

Let (Ω, E,Pr ) be a probability space and let B ∈ E. Suppose that {A1, A2, · · · , An} ⊆
E are disjoint sets for which

Pr (Ai) 6= 0 i = 1, · · · , n

and
∪n
i=1Ai = Ω.

Then for each i = 1, · · · , n

Pr (Ai|B) =
Pr (Ai) Pr (B|Ai)

∑n
k=1 Pr (Ak) Pr (B|Ak)

.

Bayes’ rule is most often used when the "given" and the "unknown" probabilities are re-
versed.

6.8. Example.

An urn contains 10 balls, of which four are red, four are blue and two are white. Two balls
are selected from the urn in sequence and without replacement. What is the probability that
the first ball selected is red given that the second ball is blue?

6. Independence and Conditional Probability 51



Solution. Let A1 be the event "first ball is red", let A2 be the event "first ball is blue", let
A3 be the event "first ball is white," and let B be the event "second ball is blue." Then

Pr (A1|B) =
Pr (A1) Pr (B|A1)

Pr (A1) Pr (B|A1) + Pr (A2) Pr (B|A2) + Pr (A3) Pr (B|A3)
.

Now

Pr (B|A1) =
4

9

Pr (B|A2) =
3

9

Pr (B|A3) =
4

9

while

Pr (A1) =
4

10

Pr (A2) =
4

10

Pr (A3) =
2

10

Thus

Pr (A1|B) =
Pr (A1)Pr (B|A1)

Pr (A1)Pr (B|A1) + Pr (A2)Pr (B|A2) + Pr (A3) Pr (B|A3)

=
4
10

4
9

4
10

4
9

+ 4
10

3
9

+ 2
10

4
9

=
4

9

In contrast, if we had drawn with replacement in the above example, then the outcome
of the first draw does not influence the number of ways the second draw can occur so we
would obtain

Pr (B|Ai) = Pr (B) =
4

10
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for i = 1, 2, 3. Extending this

Pr (B ∩Ai) = Pr (B|Ai) Pr (Ai) = Pr (B)Pr (Ai)

for i = 1, 2, 3, again assuming the selections are made with replacement. In this case we
say that Ai and B are independent since knowledge about how Ai turned out does not
provide additional information about how B turns out. More formally,

6.9. Definition.

Let (Ω, E,Pr ) be a probability space and let A,B ∈ E. Then we say that A and B are
independent if

Pr (A ∩B) = Pr (A) Pr (B).

6.10. Example.

Let Ω = {1, 2, 3, 4} and suppose that

Pr (k) =
1

4

for k = 1, 2, 3, 4. Set A = {1, 2}, B = {1, 3} and C = {1, 4}. Then A, B and C are
pair-wise independent but C and A ∩ B are not independent.

Solution. It is routine to show that the three events are pair-wise independent. Note that
Pr (C) = 1

2
while

Pr (C|A ∩B) = 1

and so C and A ∩B are not independent.

In most applications, when we consider a collection of events {E1, E2, · · · , En} we
will need to know not only that the events are pair-wise independent but that any subset of
the events are also independent. More formally,

6. Independence and Conditional Probability 53



6.11. Definition.

Let (Ω, E,Pr ) be a probability space and let {E1, E2, · · · , En} ⊆ E. Then we say that
{E1, E2, · · · , En} are mutually independent if

Pr
(
∩ikEik

)
= Πik Pr (Eik)

for any set of indices {ik} ⊆ {1, 2, · · · , n}.
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Let’s Make a Deal

Hall, Monty6. Independence and Conditional Probability: Problems.

1. Suppose that there are three chests, each with two drawers. In one chest, both drawers contain
a gold coin. In another chest, one drawer contains a silver coin and the other contains a gold coin.
In the final chest, both drawers contain a silver coin. A chest is selected at random and then a
drawer in that chest is selected at random and opened. If the open drawer contains a gold coin,
what are the chances that the other drawer contains a gold coin?

2. The game show Let’s Make a Deal was hosted by Monty Hall. On the game show, contestants
were confronted with three closed doors. Behind one of the doors there was a desirable prize (say,
a new car) while behind the other two doors there was a gag prize (say, a goat). The contestant
would select a door. Then the host Monty Hall would open one of the other two doors. Of course,
there would always be at least one of the two remaining doors that had a gag prize behind it and
that door was always the one that Monty opened.

After exposing that one of the unselected doors had a gag prize, the contestant was then always
offered the opportunity to stick with their original choice or to change their original choice to the
other, as yet unexposed, door. Can the contestant improve their chance of winning by changing
their choice of doors? Justify your answer mathematically.

3. A particular disease is very rare, infecting only one person in one thousand in a population.
There is a test for the disease that is very accurate. The probability that the test is positive given
that someone has the disease is 99%, while the chance that the test is positive given that someone
does not have the disease is only 2%. A person is selected at random from the population and tests
positive for the disease. What are the chances that the person is really infected?

Anti-spam algorithms are often based on Bayes’ rule. What, if anything, does this problem
suggest about these algorithms?
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7. Random Variables

Generally instead of considering the outcomes ω ∈ Ω directly we will apply a systematic
measurement to each outcome. The process of assigning a measurement to an outcome
can be thought of as a function

X : ω 7→ X(ω)

assigning a real number X(ω) to the outcome ω. In order for our measurementsX(ω) to
be useful, we generally need to be able to compute probabilities associated with outcomes
of the form

{ω ∈ Ω : X(ω) ≤ x}

for any real number x. Thus, we only consider functions X : Ω → R for which the above
set is an event, i.e., for which

{ω ∈ Ω : X(ω) ≤ x} ∈ E

7.1. Definition.

Let (Ω, E,Pr ) be a probability space. A random variable is a function X : Ω → R for
which

{ω ∈ Ω : X(ω) ≤ x} ∈ E
for each real number x. The state space for X is the range of X in R, i.e., the state space
is X(Ω).
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7.2. Definition.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R be a random variable defined on
Ω. If the state space of X is either finite

X(Ω) = {x1, x2, · · · xN}

or if the state space is countably infinite

X(Ω) = {x1, x2, · · ·xN , · · ·}

then the random variable X is said to be discrete.

If X is a random variable, then for each real number x we will write Pr (X ≤ x) as
short-hand for

Pr (X ≤ x) = Pr ({ω ∈ Ω : X(ω) ≤ x}) .

7.3. Definition.

Let (Ω, E,Pr ) be a probability space and letX be a random variable defined on (Ω, E,Pr ).
Then the distribution function of X is the function

FX(x) = Pr (X ≤ x)

defined for x ∈ R.

Let F : R → R be a real-valued function defined on R. For each x ∈ R define

F (x+) = lim
h↓0

F (x+ h)

and

F (x−) = lim
h↑ 0

F (x+ h)

provided that the limits exist.
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7.4. Corollary.

Let (Ω, E,Pr ) be a probability space and letX be a random variable defined on (Ω, E,Pr )
having distribution function FX(x). Then
(i) 0 ≤ FX(x) ≤ 1 for all x ∈ R;
(ii) Fx is a non-decreasing function;
(iii) limx→+∞ FX(x) = 1;
(iv) limx→−∞ FX(x) = 0; and
(v) both FX(x+) and FX(x−) exist for all x ∈ R and for all x ∈ R

Pr (X ≤ x) = FX(x) = FX(x+) and Pr (X < x) = FX(x−).

Proof. We will prove only that FX(x+) exists and equals FX(x), the other proofs being
similar.

Let h > 0 be arbitrary. Note that for the first conclusion it suffices to show that

lim
n→∞

FX

(

x+
h

n

)

= FX(x).

For any natural number n set

En = {ω ∈ Ω : X(ω) ≤ x+
h

n
}.

Then {En} satisfies E1 ⊇ E2 ⊇ E3 ⊇ · · ·. Thus

FX(x) = Pr (X ≤ x)

= Pr (∩nEn)

= lim
n→∞

Pr (En)

= lim
n→∞

FX

(

x+
h

n

)

which proves the desired conclusion.
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Of course FX is continuous at x precisely when FX(x+) = FX(x−). If X is a discrete
random variable then FX will be discontinuous at every xi in the state space. Indeed,

Pr (X = x) = FX(x+) − FX(x−)

for all x ∈ R.
The conclusions of the corollary describe the basic properties of distribution functions.

Indeed, it is possible to establish the following theorem.

7.5. Theorem.

Suppose that F : R → R satisfies
(i) 0 ≤ F (x) ≤ 1 for all x ∈ R;
(ii) F is a non-decreasing function;
(iii) limx→+∞ F (x) = 1;
(iv) limx→−∞ F (x) = 0; and
(v) both F (x+) and F (x−) exist for all x ∈ R and F (x) = F (x+) for all x ∈ R.
Then there is a probability space (Ω, E,Pr ) and a random variableX defined on (Ω, E,Pr )
with FX(x) = F .

7.6. Definition.

Let (Ω, E,Pr ) be a probability space and letX be a random variable defined on (Ω, E,Pr ).
The random variable X is said to be continuous if FX(x) is continuous.

7.7. Corollary.

Let (Ω, E,Pr ) be a probability space and letX be a random variable defined on (Ω, E,Pr ).
Then X is continuous if and only if Pr (X = x) = 0 for all x ∈ R.

With the above definition the notions of ‘continuous’ and ‘discrete’ random variables are not
collectively exhaustive. For example, suppose that F(x) is defined by

F (x) =

{
0 x < 0
x 0 ≤ x < 0.5
1 0.5 ≤ x

Then X satisfies properties (i)-(v) above and hence is a distribution function for some
random variable X defined on a probability space (Ω, E,Pr ). Since the state space for
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X is the set
[0, 0.5) ∪ 1

this random variable is not discrete. However, neither is X continuous since FX(x) is
discontinuous at x = 0.5.
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7. Random Variables: Problems.

1.
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8. Density Functions

This section will deal primarily with discrete random variables, although we will briefly dis-
cuss the concept of a density function for a continuous random variable at the end of the
section.

8.1. Definition.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R be a discrete random variable
defined on Ω. The probability density function for X is

fX(x) = FX(x+) − FX(x−).

Since
fX(x) = Pr (X ≤ x) − Pr (X < x) = Pr (X = x)

we can think of fX(x) as describing the "infinitesimal" probability at state x ∈ R. Notice
that if the state space of X is finite

S = {x1, x2, · · · , xn}
or infinite

S = {x1, x2, · · · , xn, · · ·}
then

fX(x) =
{

Pr (X = xk) if x = xk
0 otherwise

Further notice that ∑

xk∈S
fX(xk) = 1

Density functions can be particularly useful in calculating probabilities.

8.2. Example.

Suppose that an unbiased coin is flipped until the first head appears. Let X be the random
variable that counts when the first head appears. Find the probability density function for X
and use it to find the probability that X is odd.
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Solution. Note that the state space of X is

S = {1, 2, 3, · · ·}.

The probability of a head on the first coin flip is 1
2
, so

fX(1) =
1

2
.

If the first head occurs on the second flip, then the first must have been a tail, so

fX(2) =
1

2

2

.

Similarly,

fX(n) =
1

2

n−1

.

Now the probability that X is odd is

Pr (X is odd) =
∑

k odd

Pr (X = k)

=

∞∑

k=0

Pr (X = 2k+ 1)

=
∞∑

k=0

1

2

2k+1

=
1

2

∞∑

k=0

1

4

k

=
1

2

1

1 − 1
4

=
2

3
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Knowing the density function for a discrete random variable reduces the problem of
finding probabilities to one of calculating sums. Since sums of real numbers are more con-
crete (and generalizable) than particular probability spaces, this is an enormously powerful
tool.

The first conclusion in the theorem below follows readily from the definitions. The
converse conclusion highlights the fundamental connection between density functions and
probability theory.

8.3. Theorem.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R be a discrete random variable
with probability density function f and state space S. Then
(i) f(x) ≥ 0 for all x;
(ii)

∑

x∈S f(x) = 1;
(iii) f(x) > 0 if and only if x ∈ S.
Conversely, if S ⊂ R is a finite or countably infinite set and if f : R → [0, 1] is a function
satisfying (i)-(iii) above, then there is a probability space (Ω, E,Pr ) and a discrete random
variable X defined on Ω having state space S and density function f .

For the first conclusion see the exercises. While not especially difficult to prove, we only
outline the proof of the converse conclusion and omit the details. We take

Ω = S
and E to be the collection of all subsets of S. For A ⊆ E we define

Pr (A) =
∑

x∈A
f(x).

It is routine to show that (Ω, E,Pr ) is a probability space. If X : Ω → R is defined by

X(ω) = ω

then the rest of the conclusions follow.

8.4. Definition.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R and Y : Ω → R be a discrete
random variables defined on Ω. Then the joint density function of X and Y is

fXY (x, y) = Pr (X = x and Y = y)
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joint density function!discrete random variables

independent!discrete random variables

Notice that if X has state space SX and Y has state space SY then

fXY (x, y) =
{

Pr (X = x and Y = y) if x ∈ SX and y ∈ SY
0 otherwise

8.5. Definition.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R and Y : Ω → R be a discrete
random variables defined on Ω. We say that X and Y are independent if

Pr (X = x and Y = y) = Pr (X = x) Pr (Y = y)

for all x, y ∈ R.

The proof of the following proposition is immediate from the definitions.

8.6. Proposition.

Let (Ω, E,Pr ) be a probability space and let X : Ω → R and Y : Ω → R be a discrete
random variables defined on Ω. Then X and Y are independent if and only if

fXY (x, y) = fX(x)fY (y)

for all x, y ∈ R.

Thus discrete random variables X and Y are independent if and only if

fXY (x, y) =
{
fX(x)fY (y) if x ∈ SX and y ∈ SY
0 otherwise

For a continuous random variable

FX(x+) − FX(x−) = 0

for all x. Thus notion of a density function is somewhat more complex, replacing summa-
tions with integrals. Worse, it turns out that not every continuous random variable has a
density function.
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Lebesgue, HenriSuppose that X is a continuous random variable and suppose that the distribution
function FX(x) is continuously differentiable, i.e., suppose that F ′

X(x) exists and is contin-
uous. Then by the fundamental theorem of calculus

FX(b) − FX(a) =

∫ b

a

F ′
X(x) dx

and, in view of (iv) above,

FX(x) =

∫ x

−∞
F ′
X(t) dt.

If F has a continuously differentiable distribution function, then the probability of any event
associated with X can be calculated in terms of the above integral and without reference
to the underlying probability space. This is an extraordinarily useful observation in that it
reduces the abstract problem of finding probabilities to the more mundane one of calculat-
ing integrals. For this reason we generally only consider random variables X for which F ′

X

exists.

8.7. Definition.

Let (Ω, E,Pr ) be a probability space and let X be a continuous random variable defined on
(Ω, E,Pr ). Suppose that the distribution function FX(x) forX is everywhere differentiable
with a continuous derivative F ′

X(x). Then the density function of X is

fX(x) = F ′
X(x).

In this case we say that X is an absolutely continuous random variable.

Clearly the above definition only applies to a subset of the continuous random variables
X. It is possible, with some ingenuity, to construct continuous distribution functions that
are not differentiable. Interestingly, since FX is non-decreasing, FX must be differentiable
(but not necessarily continuously differentiable) everywhere except on a set E that has the
property that ∫

E

1 dt = 0.

This important result is due to the French mathematician Henri Lebesgue. Sets E of the
above type are said to have (Lebesgue) measure zero and are of particular importance
in understanding integrals and probability. It is possible – but difficult – to show that the
absolutely continuous random variables are those that map events of probability zero to
sets of measure zero.
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We defer a discussion of joint densities and independence for absolutely continuous
random variables to a later section.
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8. Density Functions: Problems.

1.
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9. Examples of Discrete Random Variables

If X is a discrete random variable, then the range of X is either a finite

x1, x2, · · · , xn

or countably infinite
x1, x2, · · · , xn, · · ·

set of real numbers. For each xj in the range of X we could take

pj = Pr (X = xj) = Pr ({ω ∈ Ω|X(ω) = xj}).

Then clearly each pj ≥ 0 and
∑

j

pj = 1.

The density function for X can then be realized as

fX(x) = = Pr (X = x)
{
pj if x = xj
0 otherwise

Almost all random variables that arise in applications either have range contained in the
non-negative integers or are constructed from random variables having range contained in
the non-negative integers. Thus in this section almost every example will have range

1, 2, 3, · · · , n

or
1, 2, 3, · · · , n, · · ·

If one knows the density function for a discrete random variable then one also knows
the distribution function and vice versa. Thus we will refer to random variables that have
the same density function as having a common distribution. Since density functions are
the basic building blocks in actually calculating probabilities associated with random vari-
ables, when discussing specific examples of random variables the focus is almost always
on the density function rather than the distribution function even though the word "distribu-
tion" is used to describe classes of random variables having the same density/distribution
functions.
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9.1. Example. Uniform Distribution.

Suppose that a number is randomly selected from the {1, 2, · · · , n}. If each number is
equally likely to be selected and if X is the number selected, then the density function for
X is

fX(x) =

{
1
n

if x = 1, 2, · · · , n
0 otherwise

This is the simplest distribution, corresponding to the Cardano Counting Axiom.

9.2. Example.

Suppose that X is a discrete random variable that assumes exactly two values, 0 and 1, i.e,
suppose that X(Ω) = {0, 1}. If

p = Pr (X = 1) and q = 1 − p = Pr (X = 0)

Then X is said to be a Bernoulli random variable. Generally p is said to be the probability
of success and q = 1 − p is the probability of failure.

The most familiar example of a Bernoulli random variable would be flipping an unbiased
coin, with

X =
{

1 coin flip is heads
0 otherwise

In this case p = q = 0.5. For an example when p 6= q, suppose that we roll a pair of
unbiased dice and

X =
{

1 if we roll doubles
0 otherwise

Then X is a Bernoulli random variable with p = 1
6

and q = 5
6
.

In many situations we will perform repeated and independent Bernoulli trials, such as
flipping an unbiased coin repeatedly.
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9.3. Definition.

A finite or infinite sequence of random variables {Xi} is said to be a sequence of independent

Bernoulli trials if
(i) Each Xi is a Bernoulli Random Variable having common probability of success p;
(i) For each k The family of random variables {X1, X2, · · · ,Xk} is independent.

9.4. Example.

Suppose that we flip an unbiased coin n times and let X be the random variable that counts
the number of heads. Find the density function for X.

Solution. Since we have flipped the coin n times and each flip has two outcomes,H and
T , there are 2n possible outcomes. Now if X = k then we must have k heads and n− k
tails. Thus to calculate how many of the 2n outcomes satisfies X = k we must calculate
how many different ways we can assign k "heads" (and hence n − k tails) to the n flips.
This amounts to selecting k numbers from {1, 2, · · · , n} to be "heads." Since the numbers
are selected without replacement and since the order in which they are selected does not
matter, this is exactly the number of combinations of n things taken k at a time

(
n

k

)

.

Thus applying the counting principle,

Pr (X = k) =

(
n

k

)(
1

2

)k

.

More generally, we have the following.
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9.5. Example.

Suppose that we have n independent Bernoulli trials {X1, X2, · · · ,Xn} having common
probability of success p. If X is the random variable that counts the number of successes in
n trials, i.e., if

X =

n∑

i=1

Xi

then the density function for X is

fX(x) =

{
(n
k

)
pkqn−k if k = 0, 1, · · ·n

0 otherwise

In this case X is called a binomial random variable.

The above can be deduced in a manner similar to the previous example – see the problems.
In order to be a density function, we must of course have

n∑

k=0

fX(k) = 1.

We can see that this is indeed the case by applying the binomial theorem:

n∑

k=0

fX(k) = (p+ q)n

= 1n

motivating the name of the random variable.

9.6. Example.

Let {Xi} be an infinite sequence of independent Bernoulli trials having common probability
of success p. Let X be the random variable that counts the number of trials until the first
success occurs. Find the density function for X. The random variable X is said to have the
geometric distribution.
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Solution. Since we are counting the number of trials until the first success, the state
space forX is {0, 1, 2, 3, · · ·}. (In similar examples up until now, we have counted the trial
on which the first success occured; for technical reasons that will become obvious later it
is preferable to count the number of trials until the first success.)

If X = 0 then the very first trial must have been a success, so

fX(0) = Pr (X = 0) = p.

If X = k and k > 0 then the first k trials must have been failures followed by a success,
so

fX(k) = pqk.

Thus in general

fX(k) =

{

pqk k = 1, 2, · · ·
0 otherwise

9.7. Example. Rolls of a die.

Suppose we roll a fair die n times. Then there are 6n possible distinct outcomes.

Generally we are not interested in finding the probability of any particular one of the 6n

outcomes but are interested instead in summary outcomes such as counting the number
of times each of the six possible outcomes occurs. For example if

m1, m2, m3, m5, m5, m6

represent the number of times each roll occurs then for each i = 1, 2, 3, 4, 5, 6

0 ≤ mi ≤ n

and

m1 +m2 +m3 +m4 +m5 +m6 = n.

If we have observed a particular set rolls that result in counts

m1, m2, m3, m5, m5, m6
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then we have observed m1 rolls of a "1," m2 rolls of a "2" and so on. Since the die is fair,
this happens with probability

1

6

mk

.

Thus if we have a particular set of n rolls that result in counts of

m1, m2, m3, m5, m5, m6

the chances of this particular set of rolls is

1

6

m1 1

6

m2 1

6

m3 1

6

m4 1

5

m1 1

6

m1

=
1

6

n

. (9.1)

This is of course consistent with notion that there are 6n outcomes and that each is equally
likely.

A more challenging question is how many of the 6n outcomes result in counts of

m1,m2,m3,m5,m5,m6?

However we have already discussed this problem: this is exactly the question that was
answered in example 4.6. The answer is

n!

m1!m2! · · ·m6!
.

Thus the probability of observing a particular set of counts

m1, m2, m3, m5, m5, m6

is

n!

m1!m2! · · ·m6!

1

6

n

This is a particular case of the multinomial distribution.
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9.8. Example. Multinomial Distribution.

Suppose that an experiment has r possible outcomes {ω1, ω2, · · ·ωr}. An example might
be rolling a die which has six possible outcomes. The probability of the jth outcome is
assumed to be pj , i.,e.,

Pr ({ωj}) = pj .

Of course
r∑

j=1

pj = 1.

Now suppose that we repeat this experiment n times with the repetitions being indepen-
dent. In the language of random variables, this means that we have n independent random
variables

Y1, Y2, · · · , Yn
with

Yi(ωj) = j

and
Pr (Yi = j) = pj.

As in the roll of dice, we are interested in the number of times each of the r outcomes
occurs, i.e., in the random variables X1, X2, · · · ,Xr where

Xk = number of times {Yi} assumes the value k.

so that the range of each Xk is {0, 1, · · · , n} and

X1 +X2 + · · ·Xr = n.

The multinomial distribution describes the joint density of the random vector
(X1, X2, · · · ,Xr). Equivalently, for a possible set of observed counts

m1, m2, · · · ,mr

the multinomial distribution describes

Pr (X1 = m1, X2 = m2, · · · ,Xr = mr)

Our goal is to develop a closed form for the above probability.
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Solution. Notice that 0 ≤ mi ≤ n for each i and that

m1 +m2 + · · ·mr = n.

Now if Y1, Y2, · · · , Yn is a particular set of outcomes that result in counts of

m1,m2, · · · ,mr

then by independence we see that the joint probability of the {Yi} is

pm1

1 · pm2

2 · · · pmr
r .

This is equivalent to (1) above. Applying example 4.6, among the nr possible outcomes,
those that result in counts of

m1,m2, · · · ,mr

must number
n!

m1!m2! · · ·mr!

and hence occur with probability

n!

m1!m2! · · ·mr!
pm1

1 · pm2

2 · · · pmr
r .

This last represents exactly

Pr (X1 = m1,X2 = m2, · · · ,Xr = mr).

A random vector (X1,X2, · · · , Xr) having the above distribution is said to have the multi-

nomial distribution.

9.9. Example. Poisson Distribution.

Suppose that λ ∈ R and that

fX(k) =

{
λk

k!
e−λ k = 0, 1, 2, · · ·

0 otherwise

Then fX satisfies (i)-(iii) of Theorem 8.3 with S = N.
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A random variable X having the above density function is said to have the Poisson distri-
bution. There are many settings in which the distribution of X can be empirically demon-
strated to approximate a Poisson distribution. Some of these include the number of mis-
prints on the pages of a book, the number of calls arriving per unit time in a telephone
switch and the number of atoms of a radioactive substance that disintegrate per unit time.
The Poisson distribution plays an important role in random processes that evolve over time
(stochastic processes) that will be discussed in detail later in this text.

The Poisson distribution also has important connections with the binomial distribution.
Suppose, for example, we are studying the arrival of phone calls at a phone switch. We
might divide each hour up in n equal subdivisions where n is chosen so large that we are
confident two calls will not arrive in any subdivision. If we assume that the calls are equally
likely to arrive in any interval then we might set

pn = Pr (call arrives in one of the n intervals) .

Clearly as n gets larger pn would get smaller. However, empirical studies of phone net-
works suggest that there is a number λ such that

lim
n
npn = λ.

Thus for large values of n we may assume that

pn ≈ λ

n
.

Now if Sn is the random variable that counts the number of successes (phone calls
arriving) in n trials, then Sn is a binomial random variable with

Pr (Sn = k) =

(
n

k

)

(pn)
k(1 − pn)

n−k

≈
(
n

k

)(
λ

n

)k (

1 − λ

n

)n−k

=
λk

k!

n(n− 1) · · · (n− k+ 1)

nk

(

1 − λ

n

)n (

1 − λ

n

)−k
.

Letting n go to infinity results in

Pr (Sn = k) ≈ λk

k!
e−λ
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Poisson approximation to binomiali.e., that Sn is approximately a Poisson random variable for large values of n (which corre-
spond to small slices of the time interval). There is considerable data available for phone
networks validating this model, although the applicability to data networks is less clear.

In any case, the above arguments show that the Poisson can be used to approximate
a binomial distribution.

9.10. Theorem.

Suppose that 0 ≤ pn ≤ 1 for each n and in addition {pn} satisfies

lim
n→∞

npn = λ

for some λ > 0. Then for each k = 0, 1, 2, · · ·

lim
n→∞

(
n

k

)

(pn)
k(1 − pn)

n−k =
λk

k!
e−λ.

This result enables one to approximate binomial calculations with Poisson sums.

9.11. Example. Poisson Approximations.

Suppose that 1% of all emails arriving in my mailbox are not spam. If I currently have 200
emails in my inbox, what is the probability that they are all spam?

Solution. In this case we would have n = 200 Bernoulli trials with probability of success
p = 0.01. The probability that all of the email is spam is therefore

(1 − .01)200 = 0.1340.

The Poisson approximation is given by

e−200(0.01) = e−2 = 0.1353.
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As the above example shows, the Poisson approximation to the binomial is reasonably
accurate. However, since the terms from the binomial density can be readily calculated
directly, using the approximation as a labor saving device is less significant than the fact
that certain Poisson distributions – such as those for phone networks – arise as the limit
binomial random variables.

Another way in which Bernoulli trials arise in waiting times to the rth success.

9.12. Example. Waiting times.

Suppose that we consider a sequence of Bernoulli trials with probability of success p. While
a geometric random variable counts when the first success occurs, suppose instead we are
interested in when the rth success occurs. One approach might be to use the random variable
Y which counts the total number of trials until the rth success. Then Y can assume values

r, r + 1, r + 2, · · ·

since there must be at least r trials to observe r successes. Algebraically it will be slightly
easier to deal with the random variable X = Y − r that can assume the values

0, 1, 2, 3, · · · .

The random variable X = Y − r counts the number of trials k ≥ r needed for the rth

success to occur. Our problem is to find the density function for X.

Solution. In order for the rth success to occur on the (r + k)th trial, we must have
observed
(a) exactly r − 1 successes and k failures in the first r+ k − 1 trials, followed by
(a) a success on the (r + k)th trial.
The probability of (a) is exactly (see example 4.5)

(
r + k− 1

k

)

pr−1(1 − p)k

while the probability of (b) is p. Hence

Pr (X = k) =

(
r + k − 1

k

)

pr(1 − p)k. (9.2)
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While the reasoning leading to the above seems clear, it is not necessarily obvious that

∞∑

k=0

Pr (X = k) =
∞∑

k=0

(
r + k − 1

k

)

pr(1 − p)k = 1

which is of course required for a density function. However, if one expands

(1 − t)−r

in a Taylor’s series, then it follows that density function does indeed sum to one (see the
problems at the end of this section).

The preceding example is a special case of the negative binomial distribution. The
negative binomial usually involves a generalization of the notion of combinations: if α is
any positive real number and if k is any non-negative integer then we define

(−α
k

)

=
(−α)(−α− 1)(−α− 2) · · · (−α− k + 1)

k!
.

9.13. Example. Negative Binomial Distribution.

Suppose that α is a positive real number and 0 < p < 1. A random variable X having
density function

fx(k) =

{ (−α
k

)
pα(−1)k(1 − p)k k = 0, 1, · · ·

0 otherwise

is said to have a negative binomial distribution. (The reason for the name ”negative
binomial” is because of the similarity to the coefficients of a binomial random variable.)

To see the connection with the preceding example, note that

(−α
k

)

=
(−α)(−α− 1) · · · (−α− k+ 1)

k!

= (−1)k
(α)(α+ 1) · · · (α+ k − 1)

k!

= (−1)k
(
α+ k − 1

k

)
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Thus if k = 0, 1, · · · then

fx(k) =

(−α
k

)

pα(−1)k(1 − p)k

=

(
α+ k− 1

k

)

pα(1 − p)k

which agrees with † when α = r. Similarly, using the Taylor’s series for (1 − t)−α one can
show that the above is indeed a density function.

If X is a geometric random variable, then Y = X − 1 is a negative binomial random
variable with α = 1 and p the probability of success for any trial.
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9. Examples of Discrete Random Variables: Problems.

1. Suppose that a box contains ten balls numbered 1, 2, · · · , 10. Suppose that there are two
independent repetitions of the experiment of selecting a ball from the box and recording the number
(i.e., the ball is replaced after each selection and the balls are randomized before the next selection).
Let X be the random variable that records the larger of the two numbers. What is the density
function for X?

2. Repeat the previous problem, but suppose instead that the balls are selected without replace-
ment.

3. Show that
∞∑

k=0

(
r + k − 1

k

)

pr(1 − p)k = 1

where 0 < p < 1 and r ≥ 0 is an integer.

4. Let X be a geometric random variable with parameter p. Let N be a fixed integer and define
the random variable Y by

Y = min{X, N}.

Find the density function for Y .

5. Let X and Y be independent random variables having the uniform distribution on the set
{1, 2, · · · , n}.
(a) Find the density for W = min{X, Y }.
(b) Find the density function for W = X + Y .
(c) Find the density function for W = max{X, Y }.
(d) Find the density function for W = |X − Y |.

6. Let X1 and X2 be independent Poisson random variables with parameters λ1 and λ2 respectively.
For a fixed z ≥ 0 Find

Pr (Y = y|X + Y = z)

for y = 0, 1, · · ·.

7. Suppose that 2% of all memory chips from a manufacturer will be defective. Use the Poisson

approximation to estimate the probability that a shipment of 1000 chips will have at most 30

defectives.
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10. Examples of Continuous Random Variables

Continuous random variables that arise in applications will most frequently be absolutely
continuous, i.e., have a probability density functions. While this is not uniformly the case,
in this section we will consider only those continuous random variables that have density
functions. Given a random variable X having density function fx, then the distribution
function

FX(x) =

∫ x

−∞
fX(t)dt

can be calculated from the density function and since

F ′
X(x) = fX(x)

the density can be calculated from the distribution function. As with discrete random vari-
ables, we will refer to random variables that have the same density (equivalently the same
distribution) as having a common distribution, even though we almost always refer to the
density function rather than the distribution function.

10.1. Example. Uniform Distribution.

Let a < b be two real numbers. Let X be the random variable that records the outcome
when a real number is randomly selected from the interval [a, b]. Then X has a uniform
distribution with density function

fX(x) =

{
1
b−a if a ≤ x ≤ b
0 otherwise
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random variables, continuous!sum of exponential

10.2. Example. Exponential Distribution.

Let λ > 0 be a real number and define

f(x) =

{

λe−λx if x ≥ 0
0 otherwise

If X is a random variable having density function f then X is said to have an exponential
distribution.

Exponential random variables arise in numerous applications, including the lifespan of elec-
trical components, the decay of radioactive isotopes, the biomass of bacteria in a culture
and the "service times" for certain queues such as those arising in telephony networks.

When we construct new random variables from continuous random variables, elemen-
tary computations using integrals often reveal properties of the density of the new random
variable. By way of example, consider the following.

10.3. Example.

Suppose that X has an exponential distribution with parameter λ. If Y = X2 what is the
density function of Y ?

Solution. We can start by finding the distribution function for Y ; for y > 0

FY (y) = Pr (Y ≤ y)

= Pr (X2 ≤ y)

= Pr (−√
y ≤ X ≤ √

y)

= Pr (0 ≤ X ≤ √
y)

=

∫ √
y

0

λe−λt dt

= e−λt
∣
∣
∣
∣
∣

√
y

t=0

=
(

1 − e−λ√
y
)
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Then the density function for Y is

fY (y) = F ′
Y (y)

=
λ

2
√
y
e−λ√

y

10.4. Example.

Suppose that X is an absolutely continuous random variable having density function fX(x)
and set

Y = aX + b

where a and b are real numbers. Then Y is an absolutely continuous random variable having
density function

fY (y) =
1

a
fX

(
y − b

a

)

Proof. Note that
Pr (Y ≤ y) = Pr (aX + b ≤ y)

= Pr

(

X ≤ y − b

a

)

and hence

fY (y) =
d

dy
Pr (Y ≤ y)

=
d

dy
Pr

(

X ≤ y − b

a

)

=
1

a
fX

(
y − b

a

)

using the chain rule and the fact that

d

dx
Pr (X ≤ x) = fX(x).
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More generally we can deduce the following. A function is monotone if it is either non-
decreasing or non-increasing. A function is strictly monotone if it is either strictly increasing
or strictly decreasing. Note that strictly monotone functionϕmust have an inverse function,
i.e., there is a function ϕ−1 so that

x = ϕ−1(ϕ(x))

Recall also that from the inverse function theorem ϕ is differentiable if and only if ϕ−1 is
differentiable.

10.5. Theorem.

Let ϕ be a continuous strictly monotone function having derivative ϕ′. Suppose that X
is an absolutely continuous random variable having density function fX . If Y = ϕ(X) is
absolutely continuous, then Y has density function

gY (y) = fX(ϕ−1(y))(ϕ−1)′(y).

10.6. Example. Standard Normal Distribution

A random variable Z is said to have a standard normal distribution if Z has density function

fZ(z) =
1√
2π
e

−z2

2 .

It may not be immediately apparent that the above defines a density function, i.e., that

∫ ∞

−∞
fZ(z)dz = 1.

To see why this is the case, we set γ =
∫∞

−∞ fZ(z)dz introduce polar coordinates as
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Thomson, William

Kelvin, Lord!see Thomson, William

follows:

γ2 =

(∫ ∞

−∞
fZ(x)dx

)(∫ ∞

−∞
fZ(y)dy

)

=

∫ ∞

−∞
fZ(x)

∫ ∞

−∞
fZ(y)dy dx

=

∫ ∞

−∞

∫ ∞

−∞

1

2π
e

−x2

2 e
−y2

2 dy dx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
e

−(x2+y2)
2 dy dx

=
1

2π

∫ ∞

0

∫ π

−π
e

−r2
2 r dθ dr

=

∫ ∞

0

re
−r2

2 dr

= e
−r2
2 |∞r=0

= 1.

Thus ∫ ∞

−∞
e

−t2
2 dt =

√
2π

as desired.

William Thomson – Lord Kelvin – would routinely pepper his lectures with complex mathe-
matics, often leaving out crucial steps. His students requested that he include more math-
ematical details in his lectures and he promised to try to do better. As it happened, the next
day the above formula was needed. Lord Kelvin wrote the formula on the board, comment-
ing that it was as simple to derive as “two plus to equals four." Then, recalling his promise
to his students, he turned to blackboard and wrote:

2 + 2 = 4.

Of course, Lord Kelvin could also be wrong. Using the thermodynamics of chemical pro-
cesses he calculated the age of the earth to be little more than twenty million years, and
hence claimed to have disproved Darwin’s theory of evolution. Lord Kelvin was also re-
sponsible for the now infamous 1895 observation that “Heavier than air flying machines are
impossible." Lord Kelvin assertions notwithstanding, the fact that

∫ ∞

−∞
e

−t2

2 dt =
√

2π
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gamma functionis one of the less obvious ways in which the transcendental numbers e and π are related.
Applying 10.4, if Z is a normal random variable with parameters µ = 0 and σ = 1

and if X = σZ + µ then X has density function

1
√

2πσ
e

−(x−µ)2

2σ2 .

This leads to the following definition.

10.7. Example.

More generally, a random variable X is said to be normally distributed with parameters µ
and σ > 0 if

X = σZ + µ

where Z is a standard normal random variable. In particular then X has density function

fX(x) =
1

√
2πσ

e
−(x−µ)2

2σ2 .

The parameters µ and σ have a particular meaning that will be discussed in a later
section.

10.8. Example.

Suppose that X is normally distributed with parameters µ = 0 and σ > 0. Let Y be the
random variable Y = X2; then the density function of Y is

fY (y) =
1

σ
√

2πy
e

−y
2σ2 .

In the case that σ = 1 Y is said to have the χ2 distribution.

Proof. This is just an application of previous theorems.

A more general version of the above comes from the gamma function.
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10.9. Definition.

If α > 0 then

Γ(α) =

∫ ∞

0

xα−1e−x dx.

The gamma function Γ(α) has many useful properties. For example, a simple integra-
tion by parts shows that

Γ(α+ 1) = αΓ(α)

so that the gamma function can be thought of as a generalized factorial. Two other useful
formulae are

Γ

(
1

2

)

=
√
π

and if α > 0 and λ is an real number

∫ ∞

0

xα−1e−λx dx =
Γ(α)

λα

(see the exercises).

10.10. Definition.

A random variable X is said to have the gamma distribution with parameters α and λ if X
has density function

fX(x) =
λα

Γ(α)
xα−1e−λx 0 ≤ x

The exponential random variables are a special case of the gamma random variables
(with α = 1). Similarly, the square of a normal random variable X having µ = 0 and
σ > 0 corresponds to a gamma random variable with α = 0.5 and

λ =
1

2σ2
.
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10. Examples of Continuous Random Variables: Problems.

1. Show that

f(x) =
1

π(1 + x2)

satisfies ∫ ∞

−∞

f(x)dx = 1

and hence that f defines a density function. Find the cumulative distribution function that corre-
sponds to f, i.e., find

F (x) =

∫ x

−∞

f(t) dt.

A random variable X having density function f is said to have the Cauchy distribution. This
distribution will have important theoretical implications in later problems.

2. Verify

Γ
(

1

2

)

=
√

π

3. Verify
Γ(α + 1) = αΓ(α)

4. Let X be an exponential random variable having parameter λ. Show that if a ≥ 0 and b ≥ 0
then

Pr (X > a + b) = Pr (X > a) Pr (X > b).

5. Let X be a random variable and suppose that for any a ≥ 0 and b ≥ 0

Pr (X > a + b) = Pr (X > a) Pr (X > b).

Then either Pr (X > 0) = 0 or else X is exponentially distributed.
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11. Jointly Distributed Discrete Random Variables

11.1. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ). Then the joint distribution function of X and Y is

FXY (x, y) = Pr (X ≤ x and Y ≤ y).

11.2. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be discrete random variables defined
on (Ω, E,Pr ). If

fXY (x, y) ≡ Pr (X = x and Y = y)

then we say that the joint density function for X and Y is fXY (x, y).

11.3. Example.

Suppose that one flips a coin and rolls a single die and the the coin flip and the roll are
indendepnt. Let X be the random variable

X =

{
0 if the coin flip is heads
1 if the coin flip is tails

and Y be the random variable

Y = value showing on the die.

Find the joint distribution of X and Y .
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Solution. Clearly for (x, y) ∈ Z × Z,

fXY (x, y) =
{

1/12 if (x, y) ∈ {0, 1} × {0, 1, · · ·}
0 otherwise

and so

FXY (x, y) =







0 x < 0
y/12 x = 0 and y = 1, 2, · · · , 6
(y + 6)/12 x = 1 and y = 1, 2, · · · , 6
1 x > 1 and y > 6

The proof of the next theorem is similar to that of Corollary 7.4 and is omitted.
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11.4. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be discrete random variables defined
on (Ω, E,Pr ) having distribution functions FX(x) and FY (y) respectively. If FXY (x, y)
is the joint distribution of X and Y then
(i) For each fixed x ∈ R

lim
y→−∞

FXY (x, y) = 0 and lim
y→∞

FXY (x, y) = FX(x)

(ii) For each fixed y ∈ R

lim
x→−∞

FXY (x, y) = 0 and lim
x→∞

FXY (x, y) = FY (y)

(iii) If
fXY (x, y) ≡ Pr (X = x and Y = y)

then X and Y have density functions given by

fX(x) =
∑

y

fXY (x, y) and fY (y) =
∑

X

fXY (x, y)

the sums being finite or countably infinite since X and Y are discrete.
(iv) If E ⊆ R × R then

Pr ((X,Y ) ∈ E) =
∑∑

(x,y)∈E
fXY (x, y).

11.5. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be discrete random variables defined
on (Ω, E,Pr ) having joint density function fXY (x, y). If Z = X + Y then the density
function of Z is

Pr (Z = z) =
∑

x

fXY (x, z − x).
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Proof. For fixed z

Pr (Z = z) = Pr (X + Y = z)

=
∑

x

Pr (X = x and Y = z − x)

=
∑

x

fXY (x, z − x)

the sums being finite or countably infinite since both X and Y are discrete.

The above result is most frequently used when X and Y are independent.

11.6. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be discrete random variables defined
on (Ω, E,Pr ). Then X and Y are independent if for each x, y ∈ R × R

fXY (x, y) = fX(x)fY (y)

11.7. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be discrete, independent random
variables defined on (Ω, E,Pr ) having density functions fX(x) and fY (y) respectively. If
Z = X + Y then the density function for Z is

fZ(z) =
∑

x

fX(x)fY (z − x)
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11. Jointly Distributed Discrete Random Variables: Problems.

1.
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12. Expectations: Discrete Random Variables

Historically expectations arose in connection with the study of gambling, casinos, and the
construction of games of chance in which the casino is assured, in the long run, of making
a profit. A simple example can illustrate the concepts.

12.1. Example.

Suppose that a casino offers the following game of chance to its patrons. The patron rolls
a single fair die and the casino pays the patron $D, where D is the number showing on the
face of the die. Thus on any play a patron can win any of {$1, $2, $3, $4, $5, $6}. For
each opportunity to play this game, the casino charges $P. The problem is to find the least
entry fee $P so that the casino does not lose money.

Solution. For this example, Ω = {$1, $2, $3, $4, $5$6} and each simple event is equally
likely, having probability one sixth. It is reasonable to assume that every play of the game is
independent of every other play. Thus if n patrons play the game, we have n independent
outcomes. If we let

Xi = dollar amount paid on the ith game

then we have a sequence
X1, X2, · · · ,Xn

of n independent and identically distributed discrete random variables having common
state space

S = {1, 2, 3, 4, 5, 6}
with

Pr (Xi = x) =

{
1
6

if x ∈ S
0 otherwise

Clearly the average amount that the casino pays out for these n plays of the game is

1

n
(X1 +X2 + · · · +Xn) .

On the other hand, if we define

N(i) = number of times the casino pays $i, i = 1, 2, · · · , 6
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then
1

n
(1 ×N(1) + 2 ×N(2) + · · · + 6 ×N(6))

is also a representation for the average amount paid by the casino on these n plays of the
game. But in the long run we would expect that each outcome occurs roughly one-sixth of
the time, i.e., that

lim
n→∞

N(i)

n
=

1

6
.

From this,

lim
n→∞

1

n
(1 ×N(1) + 2 ×N(2) + · · · + 6 ×N(6)) =

6∑

i=1

i
1

6

Thus in the long run we would expect that

lim
n→∞

1

n
(X1 +X2 + · · · +Xn) =

6∑

i=1

i
1

6

Notice that the right-hand side of this equation is just

∑

x

xfX(x).

The answer to the casino’s question is that the break-even charge for playing the game
should be

6∑

i=1

i
1

6
=

7

2

or $3.50.

In this simple case, we deduced that a reasonable calculation for the ‘expected’ pay outs
by the casino were

E(X) =
∑

x

xfX(x).

In fact, the reasoning in this simple case applies for any discrete random variable, leading
to the following definition.
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12.2. Definition.

Let X be a discrete random variable having state space S. Then the expected value of X
is

E(X) =
∑

x∈S
xfX(x)

provided that the sum converges absolutely, i.e., provided that

∑

x∈S
|x|fX(x) < ∞

12.3. Example.

If X has a Poisson distribution with parameter λ then the expected value of X is λ.

Solution. This can be calculated directly:

E(X) =

∞∑

x=0

x
λx

x!
e−λ

=

∞∑

x=1

xλx

x!
e−λ

make the change of variables y = x− 1

=

∞∑

y=0

(y + 1)λy+1

(y + 1)!
e−λ

= λ

∞∑

y=0

λy

(y)!
e−λ

= λ

so E(X) = λ.

Since discrete random variables always have density functions in this section we will con-
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centrate on properties of the expectation of discrete random variables. We begin with a
simple change of variables formula.

12.4. Theorem.

Let X be a discrete random variable having density function fX(x) and state space S. Let
ϕ be a real-valued function. Then the random variable Y = ϕ(X) has finite expectation if
and only if

∑

x∈S
|ϕ(x)|fX(x) < ∞

and in this case
E(ϕ(X)) =

∑

x∈S
ϕ(x)fX(x)

Proof. Let SY be the state space for Y and let fY (y) be the density function for Y , so
that Y has finite expectation if and only if

∑

y∈SY

|y|fY (y) < ∞.

For each y ∈ SY there is at least one x ∈ S so that ϕ(x) = y; thus if we let

Ey = {x ∈ S : ϕ(x) = y}

then each Ey is non-empty and, if y1 6= y2, then Ey1 and Ey2 are disjoint. Further, the
events {Y = y} and {X ∈ Ey} are the same events, so

fY (y) = Pr (Y = y)

=
∑

x∈Ey

Pr (X = x)

=
∑

x∈Ey

fX(x)
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From this
∑

y∈SY

|y|fY (y) =
∑

y∈SY

|y|
∑

x∈Ey

Pr (X = x)

=
∑

y∈SY

∑

x∈Ey

|y|fX(x)

for x ∈ Ey, ϕ(x) = y, so...

=
∑

y∈SY

∑

x∈Ey

|ϕ(x)|fX(x)

Now the events {Ey} are disjoint and their union must be S, the state space for X. Thus
the last line in the above is equivalent to summing over x ∈ S, i.e.,

∑

y∈SY

|y|fY (y) =
∑

x∈S
|ϕ(x)|fX(x)

showing the first conclusion. The second conclusion follows upon repeating the above
arguments without the absolute values.

Expectation is in fact a linear operator acting on random variables, as the following theorem
shows.

12.5. Theorem.

Let X and Y be continuous random variables having density functions fY (x) and fY (y)
respectively. Then
(i) if λ ∈ R then E(λX) = λE(X)
(ii) if Pr (X = λ) = 1 then E(X) = λ
(iii) If X and Y have finite expectation, then X + Y has finite expectation and

E(X + Y ) = E(X) +E(Y )

(iv) if Pr (X ≥ Y ) = 1) then E(X) ≥ E(Y )
(v) |E(X)| ≤ E(|X|)
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Proof. Part (i) follows from the preceding theorem with ϕ(x) ≡ λ:

E(λX) =
∑

x∈EX

λfX(x)

= λ
∑

x∈EX

fX(x)

= λE(X)

For (ii), if Pr (X = λ) = 1 then the density function for X must be

fX(x) =
{

1 if x = λ
0 otherwise

From this, E(X) =
∑

x xfX(x) = λ.
Part (iii) is slightly more complex. Suppose that X has state space SX and Y has

state space SY . Set Z = X + Y and let SZ be the state space for Z; then

Pr (Z = z) = Pr (X + Y = z)
∑

y∈SY

Pr (X + Y = z and Y = y)

∑

y∈SY

Pr (X = z − y and Y = y)

Now Z as finite expectation if and only if
∑

z |z|fZ(z) < ∞, i.e., if and only if

∑

z∈SZ

|z|fZ(z) =
∑

z∈SZ

∑

y∈SY

|z| Pr (X = z − y and Y = y)

=
∑

y∈SY

∑

z∈SZ

|z| Pr (X = z − y and Y = y)
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Now make the change of variables u = z − y. Then u ranges over exactly SX and so
∑

z∈SZ

|z|fZ(z) =
∑

y∈SY

∑

u∈SX

|u + y| Pr (X = u and Y = y)

≤
∑

y∈SY

∑

u∈SX

(|u| + |y|)Pr (X = u and Y = y)

=≤
∑

y∈SY

∑

u∈SX

|u| Pr (X = u and Y = y)+

+
∑

y∈SY

∑

u∈SX

|y| Pr (X = u and Y = y)

=
∑

u∈SX

≤
∑

y∈SY

|u| Pr (X = u and Y = y)+

+
∑

y∈SY

|y| Pr (Y = y)

=
∑

u∈SX

|u| Pr (X = u) +
∑

y∈SY

|y| Pr (Y = y)

< ∞
since both X and Y have finite expectation. This shows that Z = X + Y has finite
expectation. Repeating the above argument without the absolute values proves thatE(X+
Y ) = E(X) + E(Y ).

For (iv) set
U = X − Y.

Then if u < 0 it follows that

Pr (U = u) = Pr (X − Y = u) = 0

and hence that
E(U) =

∑

u∈SU

ufU(u)

=
∑

u>0, u∈SU

ufU(u)

≥ 0

Then with λ = −1 in (ii) it follows that

0 ≤ E(U)

= E(X − Y )

= E(X) − E(Y )
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from which E(Y ) ≤ E(X).
Now (v) follows from (iv) and the observation that

−|X| ≤ X ≤ |X|

with probability one.

The expected value of a random variableX is sometimes also referred to as the mean

of the random variable. The letter µ is usually reserved for the expectation or mean, so we
will sometimes write

E(X) ≡ µX .

While the mean measures the average, or central tendency, of the distribution, it does
not tell the whole story. For example, consider the two random variablesX1 andX2 having
respective densities f1 and f2 given by

f1(2) =
1

9

f1(2) =
1

9

f1(2) =
1

9

f1(10) =
1

9

f1(17) =
1

9

f1(24) =
1

9

f1(26) =
1

9

f1(34) =
1

9

f1(45) =
1

9

f2(11) =
1

9

f2(15) =
1

9

f2(16) =
1

9

f2(17) =
1

9

f2(18) =
1

9

f2(20) =
1

9

f2(20) =
1

9

f2(20) =
1

9

f2(25) =
1

9

One can readily check that both X1 and X2 have the same expectation, namely 18.
However it is clear from inspection that there is a qualitative difference between the two
random variables: there is more variability in the range of X1 than there is in the range of
X2. In order to formalize this notion of variability we introduce the concept of variance.
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12.6. Definition.

Let X be a discrete random variable having finite expectation µ and suppose that

E
(
(X − µ)2)

)
< ∞.

Then the variance of X is the number

σ2
X ≡ E

(
(X − µ)2)

)
.

The standard deviation of X is the square root of the variance, i.e.

σX =
√

(E ((X − µ)2)).

The following gives a computational formula for the variance that is often useful.

12.7. Theorem.

Let X be a discrete random variable having finite mean µ and finite variance σ2. Then

σ2
X = E(X2) − (E(X))

2
.

Proof. This follows on expanding the definition of the variance:

σ2
X = E

(
(X − µ)2)

)

= E
(
X2 − 2µX + µ2

)

= E(X2) − 2µE(X) + µ2

= E(X2) − 2µ2 + µ2

= E(X2) − (E(X))
2
.
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12. Expectations: Discrete Random Variables: Problems.

1. Let X be a random variable with density function defined by

fX(x) =
{

1
x(x+1)

if x = 1, 2, · · ·
0 elsewhere

(a) Show that fX satisfies
∑

x

fX(x) = 1.

(Hint: Note that
1

x(x + 1)
=

1

x
− 1

x + 1

and compute the partial sums.)
(b) Show that X does not have finite expectation.

2. Find the mean and variance for a Poison random variable.
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13. Probability Generating Functions

The Probability Generating Function has many important applications, only a few of which
we will be able to discuss here. It is sometimes also called the z-Transform, a term intro-
duced by E.I. Jury in 1958 in connection with sampled data control systems.

13.1. Definition.

Let X be a discrete random variable defined on the probability space (Ω, E,Pr ) and let t
be a real number. If ∑

x

Pr (X = x)tx

converges absolutely then we define the probability generating function for X to be

ΦX(t) =
∑

x

Pr (X = x)tX .

Because of Theorem 13.4, the following proposition is immediate.

13.2. Proposition.

Let X be a discrete random variable having probability generating function ΦX(t). Then

ΦX(t) = E(tX).

Proof. Taking φ(u) = tu in Theorem 13.4, this result follows immediately.
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13.3. Example.

Let X be a Poisson random variable having parameter λ. Then

ΦX(t) = eλ(t−1).

Proof.

ΦX(t) =
∞∑

x=0

txλx

x!
e−λ

= e−λ
∞∑

x=0

(λt)x

x!

= e−λeλt

= eλ(t−1).

Because the series that defines the Probability Generating Function converges abso-
lutely, it is well-behaved with respect to differentiation.

13.4. Proposition.

Let X be a discrete random variable having probability generating function ΦX(t) defined
on some open interval I. Then for any t ∈ I ΦX(t) is differentiable,

Φ′
X(t) = E

(
XtX−1

)

and
Φ′′
X(t) = E

(
X(X − 1)tX−2

)

Proof. Since the series converges absolutely, we can interchange the infinite sum and the
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differentiation operator:

d

dt
ΦX(t) =

d

dt
E
(
tX
)

= E

(
d

dt
tX
)

= E
(
XtX−1

)
.

The second conclusion is deduced in exactly the same way.

13.5. Definition.

Let X be a discrete random variable. The nth moment of X is the number E(Xn)
provided that the expectation is finite.

Because of the above proposition, probability generating functions give a link between the
moments of a random variable and the derivatives of the moment generating function.

13.6. Proposition.

Let X be a discrete random variable having finite first and second moments. Then

E(X) = Φ′
X(t)

∣
∣
t=0

and
E (X(X − 1)) = Φ′′

X(t)
∣
∣
t=0
.

Proof. This follows readily from Proposition 14.4

The above proposition makes it possible to compute the mean and variance for a
random variable X using the moment generating function ΦX . The following example
does this for a Poisson random variable; the problems at the end of this chapter extend this
to other discrete random variables.
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13.7. Example.

IfX is a Poisson random variable with parameter λ then X has mean µX = λ and variance
σ2
X = λ.

Proof. Since ΦX(t) = eλ(t−1) it follows that

µX =
d

dt
ΦX(t)

∣
∣
t=0

=
d

dt
eλ(t−1)

∣
∣
t=0

= λeλ(t−1)
∣
∣
t=0

= λ.

Similarly,

E(X2) − E(X) = E (X(X − 1))

=
d2

dt2
ΦX(t)

∣
∣
t=0

=
d2

dt2
eλ(t−1)

∣
∣
t=0

= λ2eλ(t−1)
∣
∣
t=0

= λ2.

From this

E(X2) = λ2 + E(X)

= λ2 + λ.

Thus

σ2
X = E(X2) − (E(X))

2

= λ2 + λ− (λ)2

= λ.
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While the probability generating functions are one way to calculate the mean and vari-
ance of a random variable, by far the more important application of probability generating
functions is in the next theorem.

13.8. Theorem.

Let X and Y be independent discrete random variables having probability generating func-
tions ΦX and ΦY respectively. Set Z = X + Y . Then Z has probability generating
function

ΦZ(t) = ΦX(t)ΦY (t)

i.e., the probability generating function of the sum of two independent random variables is
the product of the probability generating functions:

ΦX+Y (t) = ΦX(t)ΦY (t)

Proof. If Z has density function fZ(z) then

ΦX+Y (t) =
∑

z

fZ(z)tz

=
∑

z

tz Pr (X + Y = z)

=
∑

z

tz
∑

x

Pr (X = x and Y = z − x)

=
∑

z

tz
∑

x

Pr (X = x) Pr (Y = z − x)

=
∑

z

tz
z∑

x

fX(x)fY (z − x)

=
∑

x

fX(x)tx
∑

z

tz−xfY (z − x)

(change of variables y = z − x)

=
∑

x

fX(x)tx
∑

y

tyfY (y)

= ΦX(t)ΦY (t).
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13.9. Example.

Let X and Y be independent Poisson random variables with parameters λX and λY respec-
tively. Then Z = X + Y is a Poisson random variable with parameter λZ = λX + λY .

Proof. This follows from the preceding theorem:

ΦX+Y (t) = ΦX(t)ΦY (t)

= eλX (t−1)eλY (t−1)

= e(λX+λY )(t−1)

which is the probability generating function for a Poisson random variable having parameter
λX + λY .

Readers who are familiar with the Laplace transform from differential equations will
notice the obvious similarities to the probability generating function. For example, Theorem
14.8 is analogous to the fact that the Laplace transform of the convolution is the product of
the Laplace transforms.

The z-transformation mentioned at the start of this section is actually defined to be
E(zX) where z is a complex number. The z-transform has many properties beyond those
discussed in this section. It is a transformation from the time domain to the frequency

domain of the random variable. Roughly speaking, the time domain graph shows how the
signal changes over time whereas the frequency domain graph shows how much of the
signal lies within each frequency band over a range of frequencies.

The resulting function is also called the frequency spectrum of the signal. The fre-
quency spectrum has two components: magnitude and phase. In many applications only
the magnitude is important. When the phase information is discarded the result is the
power spectrum of the variable. A device that displays the power spectrum is a spectrum
analyzer.

The inner ear is an example of a biological spectrum analyzer. The sounds arriving in
the ear are transformed by the basilar membrane of the inner ear, which acts in effect as
a spectrum analyzer of the incoming sound waves. This results in the brain perceiving the
incoming sound as a collection of distinct notes rather than as disorganized noise.
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13. Probability Generating Functions: Problems.

1. Let X be a Bernoulli random variable with parameter p, i.e., suppose that X has density function

fX(x) =

{
p x = 1
1 − p x = 0
0 otherwise.

Show that ΦX(t) = pt + 1 − p.

2. Let X be a binomial random variable with parameters n and p. Show that

ΦX(t) = (pt + 1 − p)n.

3. Let X be a negative binomial random variable with parameters α and p. Show that

ΦX(t) =

(
p

1− t(1− p)

)α

.

4. Let X1 be a binomial random variable with parameters n1 and p and let X2 be a binomial
random variable with parameters n2 and p. If X1 and X2 are independent show that X1 + X2 is a
binomial random variable with parameters p and n1 + n2.

5. Let X1 be a negative binomial random variable with parameters α1 and p and let X2 be a
negative binomial random variable with parameters α2 and p. If X1 and X2 are independent show
that X1 + X2 is a negative binomial random variable with parameters p and α1 + α2.
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14. Jointly Distributed Continuous Random Variables

Jointly distributed continous random variables exhibit many of the same properties as jointly
distributed discrete random variables, with integrals replacing sums.

14.1. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ). Then the joint distribution function of X and Y is

FXY (x, y) = Pr (X ≤ x and Y ≤ y).

While discrete random variables must always have a density function, and hence jointly
distributed discrete random variables must always have a joint density, the same is not
true for continuous random variables. However, in the case that the joint distribtution is
differentiable, then we can find the joint density function.

14.2. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be continuous random variables
defined on (Ω, E,Pr ). If

fXY (x, y) ≡ ∂2FXY

∂x∂y

∣
∣
∣
∣
(x,y)

exists then we say that the joint density function for X and Y is fXY (x, y).

The following analog to Theorem 11.3 is immediate.
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14.3. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ) having distribution functions FX(x) and FY (y) respectively. If FXY (x, y) is
the joint distribution of X and Y then
(i) For each fixed x ∈ R

lim
y→−∞

FXY (x, y) = 0 and lim
y→∞

FXY (x, y) = FX(x)

(ii) For each fixed y ∈ R

lim
x→−∞

FXY (x, y) = 0 and lim
x→∞

FXY (x, y) = FY (y)

(iii) If

fXY (x, y) ≡ ∂2FXY

∂x∂y

∣
∣
∣
∣
(x,y)

exists then X and Y have density functions given by

fX(x) =

∫

R

fXY (x, y) dy and fY (y) =

∫

R

fXY (x, y) dx

(iv) If E ⊆ R × R then

Pr ((X,Y ) ∈ E) =

∫ ∫

E

fXY (x, y) dx dy

provided that the integral exists.
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14.4. Example.

Let X and Y have the bivariate density given by

fXY (x, y) =

√
3

4π
exp

(

−x
2 − xy + y2

2

)

− ∞ < x, y < ∞.

Then X is normally distributed with µ = 0 and σ2 = 4/3.

Solution. Using (iii) above

fX(x) =

∫ ∞

−∞
fXY (x, y)dy

=

√
3

4π

∫ ∞

−∞
exp

(

−x
2 − xy + y2

2

)

dy

=

√
3

4π

∫ ∞

−∞
exp

[

−
((
y − x

2

)2
+ 3x2

4

2

)]

dy

=

√
3

4π
exp

(

−3x2

8

)∫ ∞

−∞
exp

(

−
(
y − x

2

)2

2

)

dy

=

√
3

4π
exp

(

−3x2

8

)∫ ∞

−∞
exp

(

−u
2

2

)

du

=

√
3

4π
exp

(

−3x2

8

)√
2π

=

√
3

2
√

2π
exp

(

−3x2

8

)

which is the density function for a normally distributed random variable having parameters
µ = 0 and σ2 = 4/3 as desired.
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14.5. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ) having joint density function fXY (x, y). If Z = X + Y then the density
function of Z is

Pr (Z ≤ z) =

∫

R

fXY (x, z − x) dx.

Proof. Fix z and let Az be the set

Az = {(x, y) ∈ R × R : x+ y ≤ z}.

Then

Pr (Z ≤ z) = Pr (X + Y ≤ z)

=

∫ ∫

Az

fXY (x, y) dy dx

=

∫ ∞

−∞

∫ z−x

−∞
fXY (x, y) dy dx

=

∫ ∞

−∞

∫ z

−∞
fXY (x, u− x) dudx

=

∫ z

−∞

∫ ∞

−∞
fXY (x, u− x)dxdu

From this the density function for Z is

fZ(z) =

∫ ∞

−∞
fXY (x, z − x)dx

The above result is most frequently used when X and Y are independent.
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independent!random variables

14.6. Definition.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ). Then X and Y are independent if for each x, y ∈ R × R

FXY (x, y) = FX(x)FY (y)

or equivalently if and only if

Pr (X ≤ x and Y ≤ y) = Pr (X ≤ x) Pr (Y ≤ y).

Note that X and Y are independent if and only if whenever

a < b and c < d

then it follows that

Pr (a < X < b and c < Y < d) = FX(b) − FX(a) + FY (d) − FY (c).

More generally, if A and B are subsets of R that can be decomposed into the union of a
finite or countably infinite set of intervals, then

Pr (X ∈ A and Y ∈ B) = Pr (X ∈ A) Pr (Y ∈ B)

or that the events

{ω ∈ Ω : X(ω) ∈ A}

and

{ω ∈ Ω : Y (ω) ∈ B}

are independent.
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14.7. Definition.

Let X and Y be random variables and suppose that there is a density function f and
associated distribution function F (t) =

∫ t

−∞ f(s)ds so that both

fX(x) = f(x) − ∞ < x < ∞

and
fY (y) = f(y) − ∞ < y < ∞.

Then we say that X and Y are identically distributed with common density f and
common distribution F .

Often we will simply say “X and Y are identically distributed" with the existence of the
common density f and the common distribution function F implied. Of course if X and Y
are identically distributed it follows immediately that

FX(x) =

∫ x

−∞
f(s)ds

and

FY (y) =

∫ y

−∞
f(s)ds

The particular case whereX and Y are also independent arises most frequently, especially
in sampling theory.

The following proposition is immediate from the definitions.

14.8. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be random variables defined on
(Ω, E,Pr ) having joint density function fXY (x, y). Then X and Y are independent if
and only if

fXY (x, y) = fX(x)fY (y)

Proof. This is immediate from the definitions and the formula

FX(x)FY (y) =

∫ x

−∞

∫ y

−∞
fX(x)fY (y) dy dx
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14.9. Theorem.

Let (Ω, E,Pr ) be a probability space and let X and Y be continuous, independent random
variables defined on (Ω, E,Pr ) having density functions fX(x) and fY (y) respectively. If
Z = X + Y then the density function for Z is

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx

14.10. Corollary.

Let (Ω, E,Pr ) be a probability space and let X and Y be continuous, independent, non-
negative random variables defined on (Ω, E,Pr ) having density functions fX(x) and fY (y)
respectively. If Z = X + Y then the density function for Z is

fZ(z) =

∫ z

0

fX(x)fY (z − x)dx

Proof. Since X ≥ 0, fX(x) = 0 if x ≤ 0. Hence the integral vanishes on [−∞, 0].
Since Y ≥ 0, fY (z − x) = 0 if z − x ≤ 0. Hence the integral vanishes on [z,∞].

If you have had a course in differential equations will recognize the integral

∫ ∞

−∞
fX(x)fY (z − x)dx

as the convolution of the density functions. In differential equations convolutions arise in
connection with applying the Laplace transform to second order (or higher) linear differential
equations.
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14.11. Example.

Suppose that X1 and X2 are independent random variables having the gamma distribution
with parameters λ = λ1 = λ2 and α1 and α2. Then Z = X1 + X2 has a gamma
distribution with parameters λ and α1 + α2.

Proof. From the definitions, it follows that

fX1(x) =
λα1xα1−1e−λx

Γ(α1)
x > 0

and

fX2(y) =
λα2yα2−1e−λy

Γ(α2)
y > 0.

Thus fZ(z) = 0 for z ≤ 0 and for z > 0

fZ(z) =

∫ z

0

fX1(x)fX2(z − x) dx

=
λα1+α2e−λx

Γ(α1)Γ(α2)

∫ z

0

xα1−1(z − x)α2−1 dx.

Now make the change of variables x = zu in the integral so, with dx = zdu, we obtain

fZ(z) =
λα1+α2e−λ

Γ(α1)Γ(α2)
zα1+α2−1

∫ 1

0

uα1−1(1 − u)α2−1 du. (14.1)
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A calculation completes the argument:

Γ(α1)Γ(α2) =

(∫ ∞

0

xα1−1e−x dx

)(∫ ∞

0

yα2−1e−y dy

)

=

∫ ∞

0

∫ ∞

0

xα1−1yα2−1e−(x+y) dxdy

make the change of variables u = x+ y so du = dx)

=

∫ ∞

0

∫ ∞

y

(u− y)α1−1yα2−1e−u du dy

=

∫ ∞

0

e−u
∫ u

0

(u− y)α1−1yα2−1 dy du

make the change of variables uv = y so u dv = dy)

=

∫ ∞

0

e−u
∫ 1

0

(1 − v)α1−1uα1−1uα2−1vα2−1udv du

=

∫ ∞

0

uα1+α2−1e−u
∫ 1

0

(1 − v)α1−1vα2−1 dv du

= Γ(α1 + α2)

∫ 1

0

(1 − v)α1−1vα2−1 dv.

Substituting into equation (14.1) gives the result.

The following corollary is immediate.

14.12. Corollary.

If {X1, · · · ,Xn} are independently distributed random variables and if Xi has the gamma
distribution with parameters λ and αi, then

Z = X1 + · · · +Xn

has a gamma distribution with parameters λ and α1 + · · · + αn.
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14.13. Corollary.

Suppose that X1,X2, · · · , Xn are independent and identically distributed exponential ran-
dom variables having common parameter λ. Then Z = X1 +X2 + · · ·+Xn has a gamma
distribution with parameters α = n and λ.

Proof. This follows from the fact that an exponential random variable is a special case of
the gamma distribution with parameter α = 1.

As we have already noted, if X is normally distributed with parameters µ = 0 and

σ then X2

σ2 has the gamma distribution with parameters α = 1
2

and λ = 1
2

. Then the
following corollary is also a consequence of the above.

14.14. Corollary.

Let {X1, · · · ,Xn} be independent, identically distributed normal random variables having
µ = 0 and σ2 = 1. Then the random variable Z = X2

1 + · · ·X2
n is a gamma random

variable with parameters α = n
2

and λ = 1
2
.

The random variable Z in the preceding corollary is important in estimation theory and is
said to have the chi-squared distribution with n degrees of freedom.
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14.15. Theorem.

Let X and Y be random variables having a joint density function fXY (x, y) and set

Z =
Y

X
.

Then the density function of Z is

fZ(z) =

∫ ∞

−∞
|x|fXY (x, xz)dx − ∞ < z < ∞.

In particular, if X ≥ 0 and Y ≥ 0 then fZ(z) = 0 if z ≤ 0 and

fZ(z) =

∫ ∞

0

xfXY (x, xz) dx 0 < z < ∞.

Proof. Begin by setting

Az = {(x, y) :
y

x
≤ z}.

We can decompose Az into two sets depending on the algebraic sign of x:

Az = {(x, y) : x ≤ 0 and y ≥ xz}
⋃

{(x, y) : x ≥ 0 and y ≥ xz} .

Thus

FZ(z) = Pr (Z ≤ z)

= Pr

(
Y

X
≤ z

)

=

∫ ∫

Az

fXY (x, y)dy dx

=

∫ 0

−∞

∫ ∞

xz

fXY (x, y)dy dx+

∫ ∞

0

∫ xz

−∞
fXY (x, y)dy dx

Now make the change of variables y = xv in the inner integrals. Since, with this
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change of variables, dy = xdv,

FZ(z) =

∫ 0

−∞

∫ ∞

xz

fXY (x, y)dy dx+

∫ ∞

0

∫ xz

−∞
fXY (x, y)dy dx

=

∫ 0

−∞

∫ ∞

z

xfXY (x, xv)dv dx+

∫ ∞

0

∫ z

−∞
xfXY (x, xv)dv dx

now change the direction of integration in the inner intergral of the first term

=

∫ 0

−∞

∫ z

−∞
(−x)fXY (x, xv)dv dx+

∫ ∞

0

∫ z

−∞
xfXY (x, xv)dv dx

=

∫ ∞

−∞

(∫ z

−∞
|x|fXY (x, xv)dv

)

dx

Now change the order of integration to obtain

FZ(z) =

∫ z

−∞

∫ ∞

−∞
|x|fXY (x, xv)dxdv.

Differentiating with respect to z then gives

fZ(z) =

∫ ∞

−∞
|x|fXY (x, xz) dx − ∞ < z < ∞.

If X and Y are non-negative, then fXY vanishes on (−∞, 0] and so fZ(z) = 0 if
z < 0 and

fZ(z) =

∫ ∞

0

xfXY (x, xz) dx 0 < z < ∞.
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14.16. Theorem.

LetX and Y be independent random variables and suppose thatX has a gamma distribution
with parameters λ and α1 and that Y has a gamma distribution with parameters λ and α2.
Then the random variable

Z =
Y

X

has density function fZ(z) given by

fZ(z) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

zα2−1

(z + 1)α1+α2
0 < z < ∞

and fZ(z) = 0 if z ≤ 0.

Proof. Since

fX(x) =
λα1xα1−1e−λx

Γ(α1)
x > 0

and

fX(x) =
λα2yα2−1e−λy

Γ(α2)
y > 0

it follows that

fZ(z) =
λα1+α2

Γ(α1)Γ(α2)

∫ ∞

0

xxα1−1e−λx(xz)α2−1e−λxz dx

=
λα1+α2

Γ(α1)Γ(α2)

∫ ∞

0

xα1+α2−1e−λx(z+1) dx. (14.2.)

Since
∫ ∞

0

xα−1e−λx dx =

∫ ∞

0

(
u

λ

)α−1

e−λu 1

λ
du

=
1

λα

∫ ∞

0

uα−1e−u du

=
Γ(α)

λα
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it follows that ∫ ∞

0

xα1+α2−1e−λx(z+1) dx =
Γ(α1 + α2)

(λ(z + 1))α1+α2
.

Substituting into (14.2) above yields the result.

14.17. Example.

Suppose thatX and Y are independent, normally distributed random variables having µ = 0
and σ2 = 1. If

T =
Y 2

X2

then T has distribution given by

fT (t) =
Γ(1)

Γ(1/2)Γ(1/2)

t−(1/2)

t+ 1

=
1

π(t+ 1)
√
t
.

Proof. This follows immediately from the above theorem, that Γ(1/2) =
√
π and that

both X2 and Y 2 have the gamma distribution with parameters α = 1/2 and λ = 1/2.
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14. Jointly Distributed Continuous Random Variables: Problems.

1. Let X and Y be independent random variables each uniformly distributed on (0, 1). Find
(a) Pr (|X − Y |) ≤ 0.5
(b) Pr (Y ≥ X) .

2. Let X and Y be normally distributed random variables with µ = 0 and the same parameter σ2.
Find Pr (X2 + y2 ≤ 1).

3. Suppose that the times it takes two workers to complete a task are independently and exponen-
tially distributed random variables with a parameter of λ. What are the chances that it takes the
first worker at least twice as long as the second worker to complete the task?

4. Let X and Y be continuous random variables having joint density given by

fXY (x, y) =
{

λ2e−λy if 0 ≤ x ≤ y
0 elsewhere.

Find fX(x) and fY (y).

5. Let R and Θ be independent random variables and suppose that R has the Rayleigh density:

fR(r) =
{

r
σ exp

(
− r

2σ

)
r ≥ 0

0 otherwise

and that Θ is uniformly distributed over (−π, π). Show that X = R cos(Θ) and Y = R sin(Θ) are
independent random variables and that each has a normal distribution with parameters µ = 0 and
σ2.

6. Let X and Y be independent, normally distributed random variables having parameters µ = 0
and σ2 = 1. Show that the random variable

Z =
Y

X

has the Cauchy distribution, i.e., that

fZ(z) =
1

π(1 + z2)
−∞ < z < ∞.
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conditional density!discrete random variables

15. Conditional Densities

Suppose that X and Y are discrete random variables. We can compute the conditional
probability

Pr (Y = Y
∣
∣X = x)

using the conventional definition of conditional probability provided, of course, that
Pr (X = x) 6= 0:

Pr (Y = Y
∣
∣X = x) =

Pr (Y = y and X = y)

Pr (X = x)
=
fXY (x, y)

fX(x)
(15.1)

Thus we can define a conditional density function fY |X(y|x) for each value of x for which
fX(x) 6= 0:

fY |X(y|x) =
fXY (x, y)

fX(x)
. (15.2)

Conditional densities and the related calculations for discrete random variables reduce
readily to cases considered in section six since the probabilities can all be reduced to sums
involving fXY (x, y) and fX(x). This reduction is not possible for continuous random vari-
ables since Pr (X = x) = 0 for all x and hence the calculations in (15.1) are undefined.

One possible approach would be to consider conditional probabilities for continuous
random variables by using a limiting process. For example, we might approximate Pr (a ≤
Y ≤ b

∣
∣X = x) with

Pr (a ≤ Y ≤ b
∣
∣X = x) = lim

h→0
Pr (a ≤ Y ≤ b

∣
∣x− h ≤ X ≤ x+ h)

= lim
h→0

Pr (a ≤ Y ≤ b and x− h ≤ X ≤ x+ h)

Pr (x− h ≤ X ≤ x+ h)
.

Now if fX(x) > 0 then for h > 0 sufficiently small Pr (x− h < X,x + h) > 0, and so
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using this approximation and supposing fairly mild continuity conditions one obtains

Pr (a ≤ Y ≤ b
∣
∣X = x) = lim

h→0

Pr (a ≤ Y ≤ b and x− h ≤ X ≤ x+ h)

Pr (x− h ≤ X ≤ x+ h)

= lim
h→0

∫ x+h

x−h
∫ b

a
fXY (u, y)dy du

∫ x+h

x−h fX(u)du

= lim
h→0

1
2h

∫ x+h

x−h
∫ b

a fXY (u, y)dy du

1
2h

∫ x+h

x−h fX(u)du

=

∫ b

a
fXY (xy)dy

fX(x)

(applying the fundamental theorem of calculus)

=

∫ b

a

fXY (xy)

fX(x)
dy

i.e.,

Pr (a ≤ Y ≤ b
∣
∣X = x) =

∫ b

a

fXY (xy)

fX(x)
dy

which would then yield that the conditional random variable Y |X=x would have density
function

fY |X(y|x) =
fXY (xy)

fX(x)

which agrees exactly with discrete case (15.2). Here we are using the version of the fun-
damental theorem of calculus which asserts

ξ(x) =
d

dx

∫ x

a

ξ(u)du

= lim
h→0

1

2h

∫ x+h

x−h
ξ(u) du

where the integrand ξ is continuous in an interval about u = x. Thus would need to know
that the integrands

∫ b

a

fXY (u, y)dy and fX(u)

were continuous in an interval around u = x. Of course we also need to know that
fX(x) 6= 0. These fairly modest continuity requirements then yield exactly the same
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definition for the conditional density fY |X(y|x) as in the discrete case. Thus we will define

this to be the conditional density in the continuous case as well and dispense with taking
limits as above.

15.1. Definition.

Let X and Y be random variables having joint density function fX(x, y). Then we define
the conditional density of Y given X to be

fY |X(y|x) =
fXY (x, y)

fX(x)

whenever fX(x) 6= 0.

Note that the definition does not distinguish between discrete and continuous random
variables because of our arguments above.

15.2. Example.

Suppose that X and Y have the joint density function given by

fXY (x, y) =

√
3

4π
exp

(

−(x2 − xy + y2)

2

)

.

Then

fY |X(y|x) =
1√
2π

exp

(

−
(
y − x

2

)2

2

)

.

Proof. We have previously shown that X has the normal density with parameters µ = 0
and σ2 = 4/3. Thus for −∞ < y < ∞

fY |X =

√
3

4π
exp

(

− (x2−xy+y2)
2

)

√
3

2
√

2π
exp

(

−3x2

8

)

=
1

√
2π

exp

(

−(y − (x/2))2

2

)

.
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Thus the conditional distribution of Y given X = x is normal with parameters µ = x/2
and σ1 = 1.

In the above example we started with the joint density and deduced the marginal and
conditional densities. In many applications we need to reverse this process, i.e., we will
know the marginal and conditional densities and need to deduce the joint distribution. The
following is an example of this.

15.3. Example.

Suppose that X is uniformly distributed on (0,1) and Y is uniformly distributed on (0,X).
Find the joint density fXY of X and Y and find the marginal density fY (y) of Y .

Solution. Clearly the marginal density of X is given by

fX(x) =
{

1 if 0 < x < 1
0 elsewhere

Further the conditional density fY |X(y|x) is

fY |X(y|x) =

{
1
x

if 0 < y < x < 1
0 elsewhere.

Thus the joint density of X and Y is

fXY (x, y) =

{
1
x

if 0 < y < x < 1
0 elsewhere

The marginal density of Y is then given by

fY (y) =

∫ ∞

−∞
fXY (x, y)dx

=

∫ 1

y

1

x
dx

= − ln(y)

if 0 < y < 1 and fY (y) = 0 otherwise.
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In the following example, one of the random variables is discrete while the other is
continuous. While the example below deals with the distribution of accidents in a human
population, similar examples arise network design.

15.4. Example.

Suppose that the number of automobile accidents a driver will have in a given year is a
random variable Y having the Poisson distribution with parameter λ where the value of λ
depends upon the driver. The the random variable Λ that assigns λ to each member of the
population will have a distribution fΛ(λ). Under certain circumstances it is reasonable to
suppose that fΛ(λ) has a gamma distribution with parameters α and β, i.e., that

fΛ(λ) =
βαλα−1e−λβ

Γ(α)
.

Find fΛY (λ,y), fY (y) and fΛ|Y (λ|y).

Solution. From the narrative,

fY |Λ(y|λ) =

{
λye−y

y!
for y = 0, 1, 2, · · ·

0 elsewhere

Thus the joint density of X and Y is

fΛY (λ, y) = fΛ(λ)fY |Λ(y|λ)

=

{
fΛ(λ)λye−λ

y!
if y = 0, 1, 2, · · ·

0 otherwise

From this it follows that

fΛY (λ,y) =
βαλα−1e−λβ

Γ(α)

λye−λ

y!

for λ > and for y = 0, 1, 2, · · · and is zero elsewhere.
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Hence

fY (y) =

∫ ∞

−∞
fΛY (λ, y)dλ

∫ ∞

0

βαλα−1e−λβ

Γ(α)

λye−λ

y!
dλ

=
βα

y!Γ(α)

∫ ∞

0

λα+y−1e−λ(β+1) dλ

=
Γ(α+ y)βα

y!Γ(α)(β+ 1)α+y
.

We have used
∫ ∞

0

xα−1e−λx dx =
Γ(α)

λα
.

We leave it to the exercises to verify that Y has a negative binomial distribution with pa-
rameters α and p = β/(1 + β).

Finally for λ > 0

fΛ|Y (λ|y) = fΛY (λ,y)

=
βαλα+y−1e−λ(β+1)y!Γ(α)(β+ 1)α+y

Γ(α)y!Γ(α+ y)βα

=
(β + 1)α+yλα+y−1e−λ(β+1)

Γ(α+ y)

which implies that the conditional distribution of Λ given Y = y is the gamma distribution
with parameters α + y and β + 1.

15.5. Theorem. Bayes’ Rule.

Let X and Y be continuous random variables having a joint density function fXY (x, y).
Then

fX|Y (x|y) =
fX(x)fY |X(y|x)

∫∞
−∞ fX(x)fY |X(y|x)dx

. (15.3)
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Proof. Reversing the roles of X and Y in the definition we see that

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

From the definitions,
fXY (x, y) = fX(x)fY |X(y|x)

and so

fY (y) =

∫ ∞

−∞
fXY (x, y)dx

=

∫ ∞

−∞
fX(x)fY |X(y|x)dx

The result follows immediately upon substitution into equation (15.3).
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15. Conditional Densities: Problems.

1. Let X and Y be independent, identically distributed random variables having common density
function f . Find the joint density function for X and Z = X + Y .

2. Let X and Y be independent random variables each having the an exponential distribution with
parameter λ. Find the conditional density of X given that Z = X + Y = z.

3. In example 15.5 show that Y has a negative binomial distribution with parameters α and
p = β/(1 + β).

4. Let U and V be independent random variables having the normal distribution with µ = 0 and
σ2 = 1. With −1 < ρ < 1 set

Z = ρU +
√

1 − ρ2V.

(a) Find the density of Z.
(b) Find the joint density of U and Z.
(c) Find the joint density of X = µ1 + σ1U and Y = µ2 + σ2V where σ1 > 0 and σ2 > 0.

(d) Find the conditional density of Y given that X = x.
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16. Expectations: Continuous Random Variables

If X is discrete there is a reasonably direct argument that leads to the formula

E(X) =
∑

x

xfX(x).

For a continuous random variable it is less obvious how one would deduce what the defi-
nition of the ‘expected value’ of X ‘should’ be. By analogy, if X is continuous and has a
density function fX(x) then it seems reasonable that the expectation of X ‘should’ be

E(X)

∫

R

xfX(x) dx

provided that the integral converges absolutely. However, instead of simply reasoning by
analogy we can actually define the expectation in a slightly more general way that connects
back to the more intuitive discrete case. It will turn out that the more general definition is
same as the one we get by analogy, i.e., that E(X) really is

∫

R
xfX(x) dx when X has a

density function.
Our more general definition is based on step functions. For clarity, we formally define

step functions next.

16.1. Definition.

Let {I1, I2, · · · , In} be disjoint intervals in (−∞,∞) and let {λ1, λ2, · · · , λn} be real
numbers. A step functionis a function of the form

ϕ(t) =
{
λi if t ∈ Ii
0 otherwise

If X is a continuous random variable and if ϕ is a step function, then the random
variable Y = ϕ(X) is a discrete random variable with state space {λ1, λ2, · · · , λn}.
Since

Y = ϕ(X) =
{
λj if X ∈ Ij
0 otherwise
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it follows that Y has density function

fY (y) = Pr (Y = y)

=
{

Pr (X ∈ Ij) if y = λj
0 otherwise

=

{ ∫

Ij
f(t) dt if y = λi = j

0 otherwise

Thus the definition of expectation discrete random variaibles applies to Y and

E(Y ) =

n∑

j=1

λjfY (λj)

=

n∑

j=1

λj Pr (X ∈ Ij)

=

n∑

i=j

λi

∫

Ij

f(t) dt

=

n∑

i=j

∫

Ij

ϕ(t)f(t) dt

=

∫ ∞

−∞
ϕ(t)f(t) dt

In particular we have established the following simple proposition:

16.2. Proposition.

Let (Ω, E,Pr ) be a probability space and let X be a continuous random variable defined on
(Ω, E,Pr ) having density function fX(x). Let ϕ(t) be a step function and set Y = ϕ(X).
Then Y is a discrete random variable and

E(Y ) =

∫ ∞

−∞
ϕ(t)fX(t) dt.

As we have seen, in general a continuous random variableX need not have a density
function. Further if ϕ is continuous function then the random variable ϕ(X) might not
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have a density function even if X has a density function. Thus a definition of E(X) that
relies on X having a density function is deficient since it would not necessarily extend to
a random variable of the form ϕ(X). Because of this, while it would be tempting to define
the expectation of a continuous random variable in terms of the density function

∫ ∞

−∞
xfX(x) dx

there is a slightly better approach which turns out to be equivalent if X has a density (and,
of course, if the above integral converges absolutely).

16.3. Definition.

Let (Ω, E,Pr ) be a probability space and let X be a continuous random variable defined
on (Ω, E,Pr ). If ϕ is a non-negative continous function then we define the expectation of
ϕ(X) to be

E(X) = sup{E(g(X)) :where g is a step function and

g(t) ≤ ϕ(t) for all t}

provided that the above supremum is finite.

We will begin by only considering continuous, non-negative transformations ϕ. How-
ever, if one decomposes a continuous function into its positive and negative parts

ϕ+(t) = max{ϕ(t), 0}

and

ϕ−(t) = − min{ϕ(t), 0}

then it is trivial that ϕ+ ≥ 0, ϕ− ≥ 0, that both ϕ+ and ϕ− are continuous, and that

ϕ(t) = ϕ+(t) − ϕ−(t).

We can then define

E(ϕ(X)) = E(ϕ+(X)) − E(ϕ−(X))

provided that both expectations are finite. Proceding in this manner permits results for the
specialized case ϕ ≥ 0 to be generalized to any continuous ϕ.
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We will need list two critical facts before continuing. The first is an assertion about
continuous, non-negative functions and the second about monotone sequences of non-
negative functions.

16.4. Lemma.

Let ϕ : R → R be a continuous, non-negative function. Then there is a sequence of
non-negative step functions {ϕn(t)} with the following properties:
(i) for each t ∈ R, limn ϕn(t) = ϕ(t)
(ii) ϕn(t) ≤ ϕn+1(t)

Proof. Fix n and consider ϕ on the interval [−n, n]. Since ϕ is continuous it follows that
ϕ is uniformly continuous on [−n, n]. Thus there is a δ > 0 so that if −n < s, t < n
and |s− t| < δ then

|ϕ(s) − ϕ(t)| < 1

n
.

Pick m so small that 1/m < δ and divide [−n, n] into 2mn subintervals {Ik : k =
1, · · · , 2mn} each of length 1/m. In addition, select the intervals so that

Ik ∩ Ij = φ if i 6= j and
⋃

k

Ik = [−n, n].

On each interval Ik set
λk = min{f(s) : s ∈ Ik}

and set

ϕn =

2mn∑

k=1

λkχIk

where χIk is the indicator function of Ik:

χIk(t) =
{

1 if t ∈ Ik
0 otherwise

By the way that ϕn is constructed

ϕn(t) ≤ ϕ(t)

for all t. Further, if s ∈ Ik then

|ϕn(s) − ϕ(s)| ≤ |λk − ϕ(s)| ≤ 1

n
.

Since every s ∈ [−n, n] must be in some Ik this proves the result.
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Suppose that ϕ ≥ 0 is continous except at a finite number of points {p1, · · · , pn}. A
straightforward modification of the above argument will extend the result to this class. We
note this fact here for future reference.

16.5. Corollary.

Suppose that ϕ is continous except at a finite number of points {p1, · · · , pn}. Then there
is a sequence of non-negative step functions {ϕn(t)} with the following properties:
(i) for each t ∈ R, limn ϕn(t) = ϕ(t)
(ii) ϕn(t) ≤ ϕn+1(t)

Note that the step functions in question may include “atoms,” i.e., “steps” where the interval
is a single point [pi, pi].

The second fact needed is a theorem from advanced analysis.

16.6. Theorem. Monotone Convergence Theorem.

Let {ϕn} be a monotone sequence of non-negative integrable functions and suppose that
limn ϕn(t) = ϕ(t) exists for each t ∈ R. Then

∫

R
ϕ(t) dt exists if and only if

limn

∫

R
ϕn(t) dt exists and is finite, in which case

lim
n

∫

R

ϕn(t) dt =

∫

R

ϕ(t) dt

We can now deduce our first result about expectations of continuous random variables.

16.7. Theorem.

Let X be an absolutely continuous, random variable having density function fX(x) and let
ϕ be a non-negative continuous function. Set Y = ϕ(X) and suppose that E(Y ) < ∞.
Then

E(Y ) =

∫

R

ϕ(x)f(x)dx.

Further there is a sequence of discrete random variables Yn for which
(i) limn→∞E(Yn) = E(Y ); and
(ii) For each ε > 0, limn→∞ Pr (|Yn − Y | > ε) = 0.
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converge!in probability

converge!in measure

A sequence a random variables {Yn} satisfying (ii) with respect to some random variable
Y is said to converge in probability to Y . (Mathematicians would say {Yn} converges in

measure to Y .)

Proof. Fix ε > 0. Since E(Y ) < ∞ we can choose a step function g0(t) such that
g0(t) ≤ ϕ(t) and

E(Y ) = E(ϕ(X))

= sup{E(g(X)) : g is a step function and g ≤ ϕ}
≤ E(g0(X)) + ε

=

∫ ∞

−∞
g0(x)fX(x) dx+ ε

(since g is a step function)

≤
∫ ∞

−∞
ϕ(x)fX(x) dx+ ε

(since g ≤ ϕ )

Thus, since ε > 0 was arbitrary,

E(Y ) ≤
∫ ∞

−∞
ϕ(x)fX(x) dx.

For the reverse inequality, we select a monotone non-decreasing sequence {ϕn} of
non-negative step functions such that

lim
n
ϕn(t) = ϕ(t)

for each t. Set Yn = ϕn(X). By the definition of expectation, E(Yn) ≤ E(Y ) for each n.
By the proposition, each Yn has finite expectation and

E(Yn) =

∫ ∞

−∞
ϕn(t)f(t) dt.

By the Monotone Convergence Theorem,

lim
n

∫ ∞

−∞
ϕn(t)f(t) dt =

∫ ∞

−∞
ϕ(t)f(t) dt
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and so

E(Y ) ≥ lim
n
E(Yn)

= lim
n

∫ ∞

−∞
ϕn(t)f(t) dt

=

∫ ∞

−∞
ϕ(t)f(t) dt

showing the reverse inequality. Thus

E(Y ) =

∫ ∞

−∞
ϕ(t)f(t) dt.

For the second conclusion, fix ε > 0 and, with Yn as above, set

En = {ω ∈ Ω : Y (ω) − Yn(ω) > ε}.

Note that if ω ∈ En+1 then

Y (ω) − Yn(ω) ≥ Y (ω) − Yn+1(ω) ≥ ε

so that En+1 ⊂ En. Then

lim
n→∞

Pr (|Yn − Y | > ε) = lim
n→∞

Pr (Y − Yn > ε)

= lim
n→∞

Pr (En)

= Pr

(
⋂

n

En

)

But for any ω ∈ Ω, Yn(ω) → Y (ω) and hence for n sufficiently large ω /∈ En. Thus
∩nEn = φ. From this

lim
n→∞

Pr (|Yn − Y | > ε) = 0.
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16.8. Definition.

If X is an arbitrary continuous random variable, then

X+ = max{X, 0} and X− = − min{X, 0}

are both non-negative random variables. If both X+ and X− have finite expectation, then
we say that X has finite expectation and define

E(X) = E(X+) − E(X−).

We can now show not only that our definition of expectation coincides with the more
conventional one involving densities, but we can also deduce a formula for the expectation
of ϕ(X).

16.9. Theorem.

Let X be a continuous random variable having density function fX(x). Then X has finite
expectation if and only if

∫ ∞

−∞
|x|fX(x) dx < ∞

in which case

E(X) =

∫ ∞

−∞
xfX(x)dx.

Proof. Take

ψ+(t) =
{
t if t ≥ 0
0 otherwise

and

ψ−(t) =
{−t if t ≤ 0

0 otherwise.

Note that X+ = ψ+(X) and that X− = ψ−(X). Note that X has finite expectation if
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and only if both E(ψ+(X)) and E(ψ−(X)) are finite. Further

E(ψ+(X)) =

∫ ∞

−∞
ψ+(x)fX(x)dx

=

∫ ∞

0

xfX(x)dx

and

E(ψ−(X)) = −
∫ 0

−∞
xfX(x) dx.

Thus ∫ ∞

−∞
|x|fX(x) dx = E(ψ+(X)) + E(ψ−(X))

and ∫ ∞

−∞
xfX(x) dx = E(ψ+(X)) −E(ψ−(X)) = E(X)

as desired.

16.10. Theorem.

Let X and Y be continuous random variables having density functions fY (x) and fY (y)
respectively. Then
(i) if λ ∈ R then E(λX) = λE(X)
(ii) if Pr (X = λ) = 1 then E(X) = λ
(iii) If X and Y have finite expectation, then X + Y has finite expectation and

E(X + Y ) = E(X) +E(Y )

(iv) if Pr (X ≥ Y ) = 1) then E(X) ≥ E(Y )
(v) |E(X)| ≤ E(|X|)

Proof. The proof of (i) and (ii) is essentially the same as in the discrete case, with integrals
replacing sums.

Conclusion (iii) follows in the same way as the discrete case, using Theorem 12.4 to
obtain a formula for the density of Z = X+Y (see the exercises). However it is also easy
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to deduce (iii) directly from the definition. First it suffices to consider the case where X
and Y are non-negative. For any step function gX+Y with

0 ≤ gX+Y (t) ≤ t

it follows from the observation that gX+Y (X + Y ) is discrete and the discrete case that

E(gX+Y (X + Y )) = E(gX+Y (X)) + E(gX+Y (Y )) ≤ E(X) + E(Y ).

SinceE(X+Y ) is the supremum over all such functions gX+Y it follows thatE(X+Y ) <
∞ and

E(X + Y ) ≤ E(X) + E(Y ).

For the reverse inequality choose step functions gX and gY so that

0 ≤ gX(t) ≤ t and 0 ≤ gY (t) ≤ t

Then if
(gX ∨ gY )(t) = max{gX(t), gY (t)}

it follows that (gX ∨ gY )(t) is a step function. Thus

E(X + Y ) ≥ E(gX ∨ gY )(X + Y ))

= E(gX ∨ gY )(X)) + E(gX ∨ gY )(Y ))

≥ E(gX(X)) + E(gY (Y ))

The last inequality follows from the fact that

(gX ∨ gY )(X) ≥ gX(X)

with probability one and

(gX ∨ gY )(Y ) ≥ gY (Y )

and the discrete case of (iv). Now taking the suprema over all such functions gX and gY
we can conclude

E(X) + E(Y ) ≤ E(X + Y )

showing (iii).
Conclusions (iv) and (v) follow exactly as in the discrete case.
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Of course, the whole point of the results of this section is the following theorem.

16.11. Theorem.

Let X be a continuous random variable having a density function fX . Then X has finite
expectation if and only if

∫ ∞

−∞
|x|fX(x) dx < ∞

in which case

E(X) =

∫ ∞

−∞
xfX(x)dx.

Some examples will help to make this more concrete.

16.12. Example.

Let X have the gamma density with parameters α and λ. Then

E(X) =
α

λ
.

Proof. By the theorem,

E(X) =

∫ ∞

0

x
λα

Γ(α)
xα−1e−λx dx

=
λα

Γ(α)

∫ ∞

0

xαe−λx dx

=
λα

Γ(α)

Γ(α+ 1)

λα+1

=
α

λ
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16.13. Example.

Let X have the uniform density on the interval [a, b]. Then

E(X) =
a+ b

2
.

Proof. Again from the theorem

E(X) =

∫ b

a

x

(
1

b− a

)

dx

=

(
1

b− a

)
x2

2

∣
∣
∣
∣

x=b

x=a

=
a+ b

2

.

Finally, not every continuous random variable has a finite expectation.

16.14. Example.

Let X have the Cauchy density

fX(x) =
1

π(1 + x2)
.

Then X does not have finite expectation.
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Proof. This again follows from the theorem:

∫ ∞

−∞
|x| 1

π(1 + x2)
dx =

2

π

∫ ∞

0

x

1 + x2
dx

=
2

π
lim
u→∞

∫ u

0

x

1 + x2
dx

=
1

π
lim
u→∞

ln(1 + x2)

∣
∣
∣
∣

x=u

x=0

= ∞.
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16. Expectations: Continuous Random Variables: Problems.

1. Deduce formula 15.5.

2. Deduce 15.9(iii) from 12.4.

3. Let X be a normally distributed random variable with µ = 0 and σ = 1. Find E(X).

4. Let X be normally distributed with µ = 0. Find the mean and variance of each of the following:
(a) |X |
(b) X2

(c) etX

5. Let X be a non-negative continuous random variable having density function fX and distribution
function FX . Show that X has finite expectation if and only if

∫ ∞

0

(1− FX(x)) dx < ∞

in which case

E(X) =

∫ ∞

0

(1 − FX(x)) dx.

6. Let X have the gamma distribution with parameters α and λ. For what values of t does

Y = etx

have finite expectation? For those values of t find

E
(
etX
)

.
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Laplace transform

17. Moment Generating Functions

The probability generating function is useful in studying discrete random variables because
it’s behavior is “regular" with respect differentiation. In a similar way, moment generating
functions are useful in studying continuous random variables.

17.1. Definition.

LetX be a continuous random variable having probability density function fX(t) and suppose
that ∫

R

etfX(t) dt < ∞

Then the moment generating function for X is the random variable

MX(t) = E(etX) =

∫

R

etxfX(x) dx

Of course MX(−t) is the Laplace transform of the probability density function forX.

17.2. Example.

Suppose that X is an exponential random variable having parameter λ. Then the moment
generating function of X is

MX(t) =
λ

λ− t
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Proof. By definition,

MX(t) = E(tX)

= λ

∫ ∞

0

etxe−λx dx

= λ

∫ ∞

0

e−(λ−t)x dx

= making the change of variables u = (λ − t)x

=
λ

λ − t

∫ ∞

0

e−u du

=
λ

λ − t

17.3. Example.

Suppose that a < b and that X is a random variable which has a uniform density on [a, b],
i.e., that X has probability density function

fX(x) =

{
1

(b−a) if a < x < b

0 otherwise

Then the moment generating function of X is

et
eb − ea

t(b− a)
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Proof. Applying the definition

MX(t) = E
(
etX

)

=

∫ b

a

etxfX(x) dx

=
1

b− a

∫ b

a

etx dx

=
1

b− a

1

t
etx
∣
∣
x=b

x=a

=
1

b− a

1

t

(
ebt − eat

)

= et
eb − ea

t(b− a)

Since one equivalent definition of the moment generating is

MX(t) = E
(
etX

)

it is possible to find the moment generating function of discrete random variables. Where
they both exist, there is a simple formula that connect moment generating and probability
generating functions.

17.4. Theorem.

LetX be a discrete random variable and suppose thatX has a probability generating function
ΦX(t). Then X has a moment generating function given by the formula

MX(t) = ΦX(et)

The proof is immediate from the definitions.
Moment generating functions are so named precisely because of their regular behavior

relative to the moments of the random variable X.
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17.5. Theorem.

Let X be a random variable having finite moment generating function MX(t). Then

M
(n)
X (0) = E(Xn) ∗

Further if either side of (∗) is finite, then the other side is finite and equality holds.

Proof. Suppose for the moment thatM ′
X(t) < ∞ and thatM ′

X is continuous. Then

M ′
X(t) =

d

dt
E(etX)

=
d

dt

∫

R

etxfX(x) dx

=

∫

R

d

dt
etxfX(x) dx

=

∫

R

xetxfX(x) dx

The interchange of the integral and differential operator is justified by a theorem in higher
analysis. Evaluating the derivative at t = 0 gives the result. A simple induction extends
the result for arbitrary values of n.

17.6. Corollary.

Let X be a random variable having finite mean µ and variance σ2. Then

M ′
X(0) = µ and M ′′

X(0) = σ2 + µ2.
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Proof. It follows from the previous theorem that µ = E(X) = M ′
X(0). Since

σ2 = E ((X − E(X))

= E
(
X2 −XE(X) + (E(X))2

)

= E(X2) − 2E(X)E(X) + (E(X))2)

= E(X2) − µ2

Rearranging gives the conclusion.

17.7. Theorem.

Let X be a random variable having finite moment generating function MX(t) and let a and
b be real numbers. If Y = aX + b then the moment generating function MY (t) for Y is

MY (t) = ebtMX(at)

Proof. This follows readily from the definition:

MY (t) = E
(
etY
)

= E
(
eatX+bt

)

= ebtE
(
eatX

)

= ebtMX(at)

17.8. Example.

If X is a random variable having an exponential distribution with parameter λ then

µ =
1

λ
and σ2 =

1

λ
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Proof. Since

MX(t) =
λ

λ− t

it follows that

M ′
X(t) =

λ

(λ− t)2

and

M ′′
X(t) =

2λ

(λ− t)3

Thus

M ′
X(0) =

1

λ

and

M ′′
X(0) =

2

λ2
.

The conclusion is immediate from the above and the preceding corollary.

17.9. Example.

Let Z be a normally distributed random variable having mean zero and standard deviation
one. Then

MZ(t) = e
t2
2 .

Proof. The density function for Z is

fz(z) =
1

√
2π
e− z2

2
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so

MZ(t) = E
(
etZ
)

=
1√
2π

∫ ∞

−∞
etze− z2

2 dz

=
1√
2π

∫ ∞

−∞
e− z2

2 +tz dz

=
1

√
2π

∫ ∞

−∞
e−( z2

2 −tz+ t2
2 )e

t2
2 dz

= e
t2
2

1
√

2π

∫ ∞

−∞
e

(z−t)2

2 dz

= e
t2
2

17.10. Corollary.

Let X be a normally distributed random variable having mean µ and standard deviation σ.
Then

MX(t) = eµte
σ2t
2

and E(X) = µ and the variance of X is σ2.

17.11. Theorem.

Let X and Y be independent random variables having moment generating functions MX(t)
and MY (t) respectively. Then

MX+Y (t) = MX(t)MY (t)

Proof. Let Z = X + Y , so that the density function for Z is given by

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx.
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Then
MZ(t) = E

(
etZ
)

=

∫ ∞

−∞
etzfZ(z)dz

=

∫ ∞

−∞

∫ ∞

−∞
etzfX(x)fY (z − x)dx dz

=

∫ ∞

−∞

∫ ∞

−∞
et(z−x)etxfX(x)fY (z − x) dxdz

=

∫ ∞

−∞
etxfX(x)

∫ ∞

−∞
et(z−x)fY (z − x) dz dx

=

∫ ∞

−∞
etxfX(x)

∫ ∞

−∞
etufY (u)dudx

=

∫ ∞

−∞
etxfX(x)dx

∫ ∞

−∞
etufY (u) du

= MX(t)MY (t)

17.12. Example.

Let X1 and X2 be independent, normally distributed random variables having parameters
µ1, σ2

1 and µ2, σ2
2 respectively. Then X + Y is a normally distributed random variable

having parameters µ1 + µ2 and σ2
1 + σ2

2 .

Proof. We know that

MX1(t) = eµ1te
σ2
1

t
2

and

MX2(t) = eµ2te
σ2
2

t

2 .

Thus
MX1+X2(t) = MX1(t)MX2(t)

= eµ1te
σ2
1

t

2 eµ2te
σ2
2

t

2

= e(µ1+µ2)te
(σ2

1
+σ2

2
)t

2 .
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Since the latter is the moment generating function of a normally distributed random variable
with parameters µ1 + µ2 and σ2

1 + σ2
2 this proves the result.
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moment generating function!gamma random variables

17. Moment Generating Functions: Problems.

1. Let X have the Gamma density with parameters α and λ. Show that

MX(t) =
(

λ

λ − t

)α

.

2. Show that if X and Y are independent exponentially distributed random variables with common
parameter λ and if Z = X + Y then Z has a gamma distribution with parameters λ and α = 2.

3. Let X have the Gamma distribution with parameters αX and λ and let Y have the Gamma
distribution with parameters αY and λ. If X and Y are independent and if Z = X + Y show that
Z has the Gamma distribution with parameters αX + αY and λ.

4. Let X be a random variable having moment generating function MX(t) that is finite for all t.
Show that

Pr (X ≥ x) ≤ e−txMX(t)

for all t ≥ 0.

Hint: Fix x and let t > 0 be any real number. Define a new random variable

Y =
{

1 if e−txetX ≥ 1
0 otherwise

Show that E(Y ) ≤ E
(
e−txetX

)
.

5. Let X have the Gamma distribution with parameters α and λ. Show that

Pr
(

X ≥ 2α

λ

)

≤
(

2

e

)α

.
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18. Estimation

Recall our earlier definition of expected value.

18.1. Definition.

The expectation of a random variable is the number E(X). The expectation gives a measure
of the ‘central tendency’ of X. The mean of a random variable X is the number

µ = E(X)

provided that X has finite expectation.

A closely related measure is the variance of X, σ2.

18.2. Definition.

Let X be a random variable. If

σ2 = E
(
(X −E(X))2

)
< ∞

then the variance of X is the number

σ2 = E
(
(X − E(X))2

)

We recall that an easy computation relates σ2 and E(X2):

σ2 = E
(
(X −E(X))2

)
= E

(
X2 − 2XE(X) + µ2

)

= E(X2) − 2µE(X) + µ2

= E(X2) − µ2

or equivalently,
E(X2) = µ2 + σ2

provided that E(X2) < ∞. Random variables that have a finite mean and a finite variance
are of especial importance in applications. This section is devoted to some important
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inequalities pertaining to random variables having finite mean or finite mean and variance.
These inequalities, in turn, often turn out to have surprisingly powerful consequences in
applications.

The first theorem in this section, the Cauchy-Schwarz Inequality, is similar to the in-
equality of the same name relating the ‘inner product’ of two vectors with their norm. Recall
that if X and Y are vectors, then

|〈X,Y 〉| ≤ ‖X‖2‖Y ‖2

where 〈X,Y 〉 is the inner product of the vectors X and Y . This inequality has a long
history, with early versions in the works of Augustin Cauchy (1789-1857) , Herman Schwarz
(1843-1921) and Viktor Bunyakovsky (1804-1889). The first statement and proof in its
modern form appears to have been due to Hermann Weyl (1885-1955). There are many
ways that the geometry of n-dimensional vector spaces are similar to the geometry of
random variables having finite second moment – although as one might expect the latter is
somewhat more complex!

18.3. Theorem. Cauchy-Schwarz Inequality.

Suppose thatX and Y are random variables and that both E(X2) < ∞ and E(Y 2) < ∞.
Then

E(XY )2 ≤ E(X2)E(Y 2).

Equality holds if and only if there is a real number λ for which X = λY with probability
one.

Proof. First observe that if either E(X2) = 0 or E(Y 2) = 0 then the conclusion is trivial.
Thus we may assume without loss of generality that both E(X2) > 0 and E(Y 2) > 0.

Let λ > 0 be any real number and observe that

0 ≤ E
(
(X + λY )2

)
= E(X2) + 2λE(XY ) + λ2E(Y 2)

The above quadratic in λ is minimized when

λ = −E(XY )

E(Y 2)

18. Estimation 161



Thus, with this value for λ

0 ≤ E(X2) − 2
E(XY )

E(Y 2)
E(XY ) +

(
E(XY )

E(Y 2)

)2

E(Y 2)

= E(X2) − E(XY )2

E(Y 2)

From this

E(XY )2 ≤ E(X2)E(Y 2).

The second major inequality in this section is due to the Russian mathematician Pafnuty
Lvovich Cebysev (1821-1894). While C̆ebysev is probably best known for the following
inequality, his interests were wide-ranging and included prime number theory, mechanics,
quadratic forms and integration. The transliteration of C̆ebysev’s name from the Russian
Qebywv� is particularly challenging; in addition to the spelling we have used, you will vari-
ously find his name spelled as Tchebycheff, Chebyshev or even Tchebyscheff.

18.4. Theorem. C̆ebysev’s Inequality.

Suppose that X is a random variable having finite mean µ and finite variance σ2. Then for
any ε > 0

Pr (|X − µ| > ε) ≤ σ2

ε2

The proof of C̆ebysev’s inequality is an easy consequence of an inequality due to Markov.
Andrei Markov (1856-1922) was a student of C̆ebysev. In addition to extending C̆ebysev’s
work in number theory and continued fractions, he is probably best known for the random
processes called Markov Chains that we will study later in this text. The proof below of
Markov’s inequality is deceptively simple: the hard work has been put into the theorems
in the previous sections on expectations in the discrete and continuous cases. Markov’s
inequality can provide some surprisingly sharp estimates, as we shall see in the section on
Chernoff Bounds.
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18.5. Theorem. Markov’s Inequality.

Suppose X is a non-negative random variable having finite mean µ and suppose ε > 0 is
any positive real number. Then

Pr (X ≥ ε) ≤ µ

ε

Proof. Let U be the random variable

U =
{
ε if X ≥ ε
0 otherwise

Then U ≤ X so
εPr (X ≥ ε) = E(U)

≤ E(X)

= µ

from which the result is immediate.

Proof of C̆ebysev’s Inequality. Let Y be the random variable defined by

Y = (X − µ)
2

Then from Markov’s inequality,

Pr (Y ≥ ε2) ≤ E(y)

ε2

which reduces to the result.
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18. Estimation: Problems.

1. Let X be a random variable having finite mean µ and finite variance σ2.
(a) Verify that at least 75% of the observations must fall within two standard deviations of the

mean.
(b) For n ≥ 2 verify that

Pr (|X − µ| ≤ σn) ≥ 1 − 1

n2

for any natural number n.

2. The voltage in a certain circuit is a random variable with mean 120 and standard deviation 5.
Expensive equipment will be damaged if the voltage is not between 112 and 128. Use ffCebyshev’s
inequality to estimate the liklihood of damage occuring.

3. A binary transmission channel will erroneously transmit a bit of data with probability of 10%.
Use ffCebyshev’s inequality to estimate the probability that there are between 4 and 16 errors in 100
bits of data.

4. About 2% of a certain type of RAM chips are defective. A manufacturer needs 50 chips for a
certain circuit board. How many should she buy in order for there to be at least a 99% chance of
having at least 49 working chips?

5. A pharmaceutical company manufactures viagra pills which contain an average of 50 mg of
viagra with a standard deviation of 0.75 mg. Find the proportion of the pills that have between 47
and 53 mg.

6. Let X and Y be random variables having finite second moment. Verify the parallelogram law:

E((X + Y )2) + E((X − Y )2) = 2E(X2) + 2E(Y 2)
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19. Sampling Distributions.

In many situations statisticians will be interested in studying a population which they have
reason to believe is normally distributed but for which the parameters µ and σ2 are un-
known. An early example arose in the Prussian army in which the quartermasters wished
to predict how many uniforms of each size needed to be kept in inventory. Since height
and weight – and hence uniform size – were thought to be distributed normally among the
soldierly population, this amounted estimating probabilities like

Pr (a− 1/2 < X ≤ a+ 1/2)

whereX measures “uniform size" and “a" represents a uniform size. The above probability
then tells the quartermaster what proportion of the inventory should be size “a." If sizes are
normally distributed with parameters µ and σ2 then normalizing the above

Pr

(
a− 1/2 − µ

σ
< Z ≤ a+ 1/2 − µ

σ

)

(19.1)

where

Z =
X − µ

σ

is a normal random variable with µ = 0 and σ2 = 1 reduces the problem to calculating
areas under the “standard" normal curve

fZ(z) =
1

√
2π

exp

(

−z
2

2

)

.

In order to the normalization to Z it is necessary to know the values of µ and σ2. Learn-
ing the exact values would, of course, involve a census of the entire soldierly population,
present, past and future. Since this is impractical, the problem reduces to estimating the
values of µ and σ with sampling data. In this section we will gather together some impor-
tant sampling distributions that help to address this problem. Among the random variables
we will need to consider are

X̄ =
1

n
(X1 +X2 + · · · +Xn) sample mean

S2 =
1

n− 1

n∑

i=i

(
(Xi − X̄)2

)
sample variance

t =
X̄ − µ
√

S2/n
Student’s t
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While our ultimate interest in this section is the case when the underlying distribution
is normal, we collect some useful facts about the random variables X̄ and S2.

19.1. Theorem.

Let {X1, X2, · · · ,Xn} be independent and identically distributed random variables having
common mean µ and common variance σ2. Then the random variable

X̄ =
1

n

n∑

i=i

Xi

has mean µ and variance σ2/n. If S2 is the random variable

S2 =
1

n− 1

n∑

i=i

(
(Xi − X̄)2

)

then E(S2) = σ2.

19.2. Definition.

We say that X̄ is an unbiased estimator for µ since E(X̄) = µ and we say that S2

is an unbiased estimator for σ2 since E(S2) = σ2.

Note that in contrast with how σ2 is calculated, we must divide S2 by n− 1 in order for S2

to be an unbiased estimator for σ2.

Proof. First note that

E(X̄) = E

(

1

n

n∑

i=i

Xi

)

=
1

n

n∑

i=i

E(Xi)

= µ.
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For the rest of the conclusions we first compute E(X̄2):

E
(
X̄2
)

= E
(
X̄X̄

)

=
1

n2
E





(
n∑

i=1

Xi

)



n∑

j=1

Xj









=
1

n2
E





n∑

i=1

n∑

j=1

XiXj





=
1

n2

n∑

i=1

n∑

j=1

E(XiXj)

=
1

n2

n∑

i=1

(n− 1)µ2 + µ2 + σ2

= µ2 +
σ2

n
.

Using the fact that

var(X̄) = E(X̄2) − (E(X̄))2

we may immediately conclude that the variance of X̄ is σ2/n.
Next calculate E(S2):

E(S2) =
1

n− 1
E

(
n∑

i=1

(Xi − X̄)2

)

=
1

n− 1
E

(
n∑

i=1

X2
i − 2XiX̄ + X̄2

)

=
1

n− 1

n∑

i=1

(
E(X2

i ) − 2E(XiX̄) + E(X̄2)
)

=
1

n− 1

n∑

i=1

(

µ2 + σ2 − 2E(XiX̄) + µ2 +
σ2

n

)

(19.2.)
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Now consider the middle term in the sum:

E(XiX̄) =
1

n
E





n∑

j=1

XiXj





=
1

n

n∑

j=1

E(XiXj)

=
1

n

(
(n− 1)µ2 + µ2 + σ2

)

= µ2 +
1

n
σ2.

Substituting into (19.2):

E(S2) =
1

n− 1

n∑

i=1

(

µ2 + σ2 − 2E(XiX̄) + µ2 +
σ2

n

)

=
1

n− 1

n∑

i=1

(

σ2 − 1

n
σ2

)

=
n

n− 1

(

1 − 1

n

)

σ2

= σ2

as desired.

Since E(X̄) = µ and E(S2) = σ2, it seems reasonable that X̄ ≈ µ and S2 ≈ σ2

for large values of n. This intuitive notion is what is behind “laws of large numbers." Laws
of large numbers refer to a class of theorems that determine when a statement like

X̄ → E(X̄) as n → ∞

is true. C̆ebysev’s inequality provides a weak form of a law of large numbers for the mean
that asserts that the above statement is true “in probability."
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19.3. Corollary.

{X1,X2, · · · ,Xn} be independent and identically distributed random variables having com-
mon mean µ and common variance σ2. Then for any ε > 0

Pr (|X̄ − µ| > ε) ≤ σ2

nε2

Proof. This is immediate from C̆ebysev’s inequality and the previous theorem.

The above not only says that Pr
(
|X̄ − µ| > ε

)
→ 0 as n → ∞, it even gives an

estimate as to how large n must be in order to be “sure" (up to some small chance of error
σ2/2ε2) that |X̄ − µ| < ε. Returning to equation (19.1) and the Prussian quartermaster’s
problem, applying weak laws of large numbers would permit us to estimate the desired
probabilities by replacing the unknown parameters µ and σ with X̄ and

√
S2:

Pr

(
a− 1/2 − µ

σ
<
X − µ

σ
≤ a+ 1/2 − µ

σ

)

≈ Pr

(

a− 1/2 − X̄√
S2

<
X − X̄√

S2
≤ a+ 1/2 − X̄√

S2

)

However, the Prussian quartermaster was actually able to infer that the underlying distribu-
tions were normally distributed. In this case we can say more about the distributions of
X̄ and S2 and can actually find the density function for

X − X̄
√
S2
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19.4. Corollary.

Let {X1,X2, · · · ,Xn} be independent and identically distributed normal random variables
having common mean µ and common variance σ2. Then the random variable

X̄ =
1

n

n∑

i=i

Xi

is normally distributed with mean µ and variance σ2/n. If S2 is the random variable

S2 =
1

n− 1

n∑

i=i

(
(Xi − X̄)2

)

then S2 has a gamma distribution with parameters α = n/2 and λ = n/2σ2.

Proof. Since each Xi − X̄ is normally distributed with mean µ = 0 and, by the proof of
Theorem 1, variance σ2(n− 1)/n, it follows from 10.8 and the definitions that (Xi − X̄)2

is a gamma random variable with parameters α = 1/2 and

λ =
n

2(n− 1)σ2
.

Then the random variable
n∑

i=i

(
(Xi − X̄)2

)

is necessarily a gamma random variable with parameters α = n/2 and

λ =
n

2(n− 1)σ2

from which S2 is a gamma random variable with parameters α = n/2 and λ = n/2σ2.

Finally we turn to the question of the distribution of X̄/
√
S2. For simplicity, we nor-

malize both the numerator and denominator.
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19.5. Theorem.

Let X be a normally distributed random variable having mean µ = 0 and variance σ2 = 1
and let Y be a Chi-squared random variable with n degrees of freedom, i.e., Y has a gamma
distribution with parameters α = n/2 and λ = 1/2. Then the random variable

T =
X

√

Y/n

has the density function

fT (t) =
Γ
(
1
2
(n+ 1)

)

√
nπΓ(n/2) (1 + (t2/n))

(n+1)/2

Proof. We will first consider

W 2 =
X2

Y
.

SinceX is normally distributed,X2 is a gamma random variable with parametersα = 1/2
and λ = 1/2. Then W 2 is the ratio of two gamma distributions and so, via 14.16,

fW 2(z) =
Γ(α1 + α2)

Γ(α1)Γ(α2)

zα2−1

(z + 1)α1+α2
0 < z < ∞

where α1 = n/2 and α2 = 1/2. Using Γ(1/2) =
√
π this then simplifies to

fW 2(z) =
Γ((1 + n)/2)
√
πΓ(n/2)

z−1/2

(z + 1)(n+1)/2
0 < z < ∞

Thus

Pr (W 2 < z) =

∫ z

0

fW 2(s)ds.

On the other hand,
Pr (W 2 < z) = Pr (−

√
z < W <

√
z)

and so

Pr (−
√
z < W <

√
z) =

∫ z

0

fW 2(s)ds.
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Student’s t distribution

Gosset, William Sealey

Neyman, Jerzy

Fisher, Ronald

Differentiating both sides gives

1

2
√
z

(
fW (−

√
z) + fW (

√
z)
)

= fW 2(z).

Setting z = w2 gives

1

2
(fW (−w) + fW (w)) = |w|fW 2(w2).

One can readily show that fW is symmetric about w = 0 and so this becomes

fW (w) = |w|fW 2(w2)

= |w|Γ((n+ 1)/2)
√
πΓ(n/2)

|w|−1

(w2 + 1)(n+1)/2

=
Γ((n+ 1)/2)
√
πΓ(n/2)

1

(w2 + 1)(n+1)/2

To complete the proof, note that T =
√
nW and hence

fT(t) =
1

√
n
fW (t/

√
n)

=
Γ
(
1
2
(n+ 1)

)

√
nπΓ(n/2) (1 + (t2/n))

(n+1)/2

The above distribution is most often called “Student’s t” distribution. It was devised
by William Sealey Gosset, a chemist and statistician employed by the Guinness Brewery
in Dublin. He devised important statistical methods for analyzing the small sample sizes
available for monitoring quality control at the brewery. While he had degrees from Oxford in
both Chemistry and Mathematics, in 1906-07 he traveled to University College in London
to study further under Karl Pearson. He continued his correspondences with Pearson and
with Jerzy Neyman and Ronald Fisher.

Gosset published his statistical work under the pseudonym "A. Student," hence the
name for the distribution. Most statistics books today will contain "Student’s t-tables" for
working with small samples, so that today he is much better known by his pseudonym
than by his real name. Tradition has it that he published under a pseudonym because his
employer, while encouraging and funding his research, discouraged scholarly publication;
however there is no documentary evidence of this.
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modulus

20. Characteristic Functions

Moment generating functions
MX(t) = E(etX)

are useful in that the existence of the nth moment E(Xn) exactly corresponds to the
existence of the nth derivative of MX evaluated at 0, i.e.,

E(Xn) = M
(n)
X (0)

However, moment generating functions have the limitation that the integral or sum that is
implicit in the definition may not converge absolutely. The characteristic function – anal-
ogous to the Fourier transform – provides a more regularized approach that avoids this
difficulty. While slightly more complex computationally, characteristic functions provide a
powerful tool in that the characteristic function will always exist, provided that X has a
density function.

Since characteristic functions involve complex variables, we begin with a quick sum-
mary of the basic facts that we will need.

A complex number z is a number of the form z = x + iy where x and y are real
numbers and i =

√−1. The modulus of a complex number is

|z| =
√

x2 + y2.

The modulus of a complex number is analogous to the absolute value of a real number.
There is also a one-to-one correspondence between complex numbers z = x + iy and
points on the plane where the modulus of z = x + iy is similar to the norm ‖v‖ of the
vector originating at the origin and terminating at (x, y). However the interaction between
the algebra of complex numbers and the metric geometry of the modulus is somewhat
different than conventional Euclidian geometry on the plane.

Starting with a complex number z we can define ez using the Taylor’s series

z =

∞∑

n=0

zn

n!
.

With this definition it is possible to show that the usual properties of the exponential function
apply, it viz.,

eu+v = euev
d

dz
eλz = λeλz
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For example, for the former formula:

eu+v =

∞∑

n=0

(u+ v)n

n!

=

∞∑

n=0

n∑

m=0

1

n!

(
n

m

)

umvn−m

=

∞∑

m=0

∞∑

n=m

1

m!(n−m)!
umvn−m

=

∞∑

m=0

um

m!

∞∑

n=m

vn−m

(n−m)!

=

∞∑

m=0

um

m!

∞∑

j=0

vj

(j)!

= euev

Examining the Taylor’s series for eit where t ∈ R reveals an important formula due to De
Moivre.

eit =

∞∑

n=0

(it)n

n!

= 1 +
it

1
− t2

2!
− it3

3!
+
t4

4!
+ · · ·

=

(

1 − t2

2!
+
t4

4!
− · · ·

)

+ i

(
t

1!
− t3

3!
+
t5

5!
− · · ·

)

= cos(t) + i sin(t).

From this we can immediately deduce that
∣
∣eit
∣
∣ = 1. The above also shows that

es+it = eseit

= es (cos(t) + i sin(t))

Finally, given a complex number z = x + iy it is an easy calculation to see that
eu+iv = z whenever u = ln(|z|) and v = arctan(y/x) (this is a simple change to polar
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coordinates). There are, of course, multiple values of v for which v = arctan(y/x). If we
assume that −π ≤ v < π then we can define ln(z) = u+ iv where u = ln(|z| and

v = arctan

(
Im(z)

Re(z)

)

and −π ≤ v < π. With this definition ln(z) is a well-defined single-valued function and
eln(z) = z. Differentiating on both sides gives

1 =
d

dz
eln(z)

apply the chain rule

=
d

dz
ln(z)eln(z)

apply eln(z) = z

=
d

dz
ln(z)z

from which
d

dz
ln(z) =

1

z
.

The point of these more-or-less heuristic arguments is that both ez and ln(z) are well-
defined and have the usual relationships and derivatives for complex arguments.

20.1. Definition.

If X is a random variable a density function fX(x) then the characteristic function of X
is the function ϕX(t) given by

ϕX(t) = E
(
eitX

)

If X is discrete, then

ϕX(t) =

∞∑

x=−∞
eixtfX(x)

while if X is continuous then

ϕX(t) =

∫

R

eitxfX(x) dx.
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Characteristic function!uniform distributionIn either case, since
∣
∣eitxfX(x)

∣
∣ = fX(x), it follows thatE

(
eitX

)
is finite and well-defined

for all t ∈ R. The reason that the characteristic function is always finite and well-defined is
because eit has modulus one for all t. In contrast, et is unbounded and hence the moment
generating function can fail to exist because the associated integral or sum might diverge.

If X in addition does have a moment generating function MX(t), however, then

ϕX(t) = MX(it).

This means that we can immediately deduce the characteristic functions for several classes
of random variables. For example,if X is normally distributed with mean µ and standard
deviation σ2 then

ϕX(t) = exp

(

itµ− σ2t2

2

)

while if X is exponentially distributed with parameter λ then

ϕX(t) =
λ

λ − it

and if X is uniformly distributed on (−1, 1) then

ϕX(t) =
sin(t)

t
.

Of course, the characteristic function can also be related to the probability generating func-
tion

ΦX(t) = E(tX)

that we considered for discrete random variables. Indeed,

ΦX(et) = MX(t) and so ϕX(t) = ΦX(eit)

Thus if X is a binomial random variable with parameters n and p then the characteristic
function for X is

ϕX(t) = (peit + 1 − p)n

and if X is has a Poisson distribution with parameter λ then

ϕX(t) = exp(λ(eit − 1)
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If X and Y are independent random variables, then so are the random variables eitX

and eitY and so

ϕX+Y (t) = E
(

eit(X+Y )
)

= E
(
eitXeitY

)

= E
(
eitX

)
E
(
eitY

)

ϕX(t)ϕY (t)

or
ϕX+Y (t) = ϕX(t)ϕY (t)

Further, the moments of X can be inferred from the derivatives of ϕX provided that
the moments exist (or equivalently provided that the derivatives exist). For example,

d

dt
ϕX(t)|t=0 =

d

dt
E
(
eitX

)

= E
(
iXeitX

)
|t=0

= iE(X)

provided that the derivatives exist (or that the first moment is finite). Similarly,

ϕ
(n)
X (0) = inE(Xn)

If we can expand MX(t) in a power series on some open interval about t ∈ R

MX(t) =

∞∑

n=0

E(Xn)

n!
tn

then we can also expand the characteristic function

ϕX(t) =

∞∑

n=0

inE(Xn)

n!
tn

on the same open interval about t.
Finally, note that since

E(X2) = σ2 + µ2

and
ϕ′′
X(0) = i2E(X2)

it follows that
ϕ′′
X(0) = −(σ2 + µ2)
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20. Characteristic Functions: Problems.

1. Suppose that X is a random variable and that MX(t) < ∞ for all t. Show that for all t ≥ 0

Pr (X ≥ x) ≤ e−txMX(t).

(Hint: try using an argument similar to the one used for ffCebysev’s inequality.)

2. Let X be a gamma random variable having parameters α and λ. Show that

Pr
(

X ≥ 2α

λ

)

≤
(

2

e

)α

3. Find the characteristic function for a geometric random variable X having parameter p.

4. Let {X1, X2, · · · , Xn} be independent random variables each having a geometric distribution
with parameter p. Find the characteristic function of the sum X1 + X2 + · · · + Xn.

5. Let X be any random variable.
(a) Show that

ϕX(t) = E (cos(tX)) + iE (sin(tX))

(b) Show that
ϕ−X(t) = E (cos(tX)) − iE (sin(tX))

(c) Show that
ϕ−X(t) = ϕX(−t)
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21. Central Limit Theorem

We earlier used C̆ebysev’s inequality in order to deduce, for example, estimates like

Pr (|X − µ| < σ

2
) ≥ 0.5

These estimates are useful precisely because they work even in the absence of knowledge
about the underlying distribution of X.

The Central Limit Theorem is a much more powerful result of the above general type.
Applications of the theorem often arise when a random sample of size n is drawn from
a population and individual measurements are taken. An opinion poll is an example of
such a situation where the sample mean X̄ can be thought of estimating the mean of the
underlying population µ. In this particular situation, if we know that X has a mean and
a finite variance then we can conclude that X̄ is approximately normally distributed for n
sufficiently large. The astounding power of this result derives from the fact that it applies
regardless of the distribution of X: all we need to know is that X has finite mean and
variance.

21.1. Theorem.

Suppose that {X1,X2, · · · ,Xn} are independent, identically distributed random variables
having common characteristic function ϕX(t). Set

Sn = X1 +X2 + · · · +Xn.

Then the characteristic function of Sn is

ϕSn(t) = (ϕX(t))n .

Proof. Since the random variables {Xn} are independent, the characteristic function of
the sum is the product of the characteristic functions:

ϕSn(t) = E (exp (it(X1 +X2 + · · · +Xn)))

= E (exp(itX1))E (exp(itX2)) · · ·E (exp(itXn))

= (ϕX(t))
n
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as desired.

21.2. Corollary.

Suppose that {X1,X2, · · · ,Xn} are independent, identically distributed random variables
having common characteristic function ϕX(t). Set

X̄n =
1

n
(X1 +X2 + · · · +Xn) .

Then the characteristic function of X̄n is

ϕX̄n
(t) =

(

ϕX

(
t

n

))n

.

Proof. This follows immediately from the theorem above and the definition:

ϕX̄n
(t) = E

(

exp

(

i
t

n
(X1 +X2 + · · · +Xn)

))

= ϕSn

(
t

n

)

=

(

ϕX

(
t

n

))n

.

The next theorem will not be used directly in the proof of the Central Limit Theorem
but is the fundamental fact needed to establish the Continuity Theorem, which we will use.
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21.3. Theorem. Inversion Theorem.

Let X be a random variable having probability density function fX(x) and characteristic
function ϕX(t). If X is discrete having state space Z then

fX(n) =
1

2π

∫ π

−π
e−intϕX(t) dt (1)

while if X is continuous then

fX(x) =
1

2π

∫ ∞

−∞
e−itxϕX(t) dt. (2)

provided that
∫ ∞

−∞
|ϕX(t)| dt < ∞.

This is called an inversion theorem since it describes how to recover the density function
for X from the characteristic function or how to ‘invert’ the characteristic function. It is
actually fairly easy to argue that (1) should be true. For example, if we expand ϕX(t)
inside the integral in (1) we get:

1

2π

∫ π

−π
e−intϕX(t) dt =

1

2π

∫ π

−π
e−int





∞∑

j=−∞
eijtfX(j)



 dt

=

∞∑

j=−∞
fX(j)

1

2π

∫ π

−π
ei(j−n)t dt

The interchange of the sum and integral in last step above is justified by Fubini’s theorem,
which is proved in advanced analysis classes. To complete the argument, it is enough to
show that

1

2π

∫ π

−π
ei(j−n)t =

{
1 if j = n
0 otherwise

which is left as an easy exercise for the reader.
The continuous case of the inversion theorem is much more difficult to verify and in-

volves fairly deep results in advanced analysis. While difficult to verify in general, specific
cases are easy – see the exercises.
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The next theorem is the central fact needed in order to establish the Central Limit
Theorem.

21.4. Theorem. Continuity Theorem.

Let X be a random variable having characteristic function ϕX(t). Suppose that
{X1,X2, · · · ,Xn. · · ·} is a sequence of random variables having characteristic functions
{ϕXn(t)}. If

lim
n→∞

ϕXn(t) = ϕ(t)

for all t then
lim
n→∞

P (Xn ≤ x) = P (X ≤ x).

for all points x at which FX(x) is continuous.

Thus if the characteristic functions converge then the distributions also converge. It is im-
portant to note that none of the random variables in question need be continuous! This is
a very deep and complex result that relies heavily on the inversion theorem. It is called a
‘continuity’ theorem since it says, roughly, that the distribution functionFX depends continu-
ously on the characteristic functionϕX since convergence of the latter implies convergence
of the former.

21.5. Theorem. Central Limit Theorem.

Suppose that {X1,X2, · · · ,Xn} are independent, identically distributed random variables
having common finite mean µ and common finite variance σ2. Set

X̄ =
1

n
(X1 +X2 + · · · +Xn) .

Then

Thus for large values of n
X̄ − µ

(σ/
√
n)

is approximately normally distributed with mean zero and variance one. For practical pur-
poses, n should be at least 30 in order to apply this result. Another way to state this is

that the ‘sampling distribution’ of X̄ is normally distributed with mean µ and variance σ2

n
.

Notice that this is true even if the common distribution shared by the random variables
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{Xn} is discrete!

In order to establish the Central Limit Theorem we first establish a simple lemma about
the behavior of characteristic functions near zero.

21.6. Lemma.

Let X be a random variable having characteristic function ϕX(t). If X has finite mean µ
then

lim
t→0

ln(ϕX(t)) − iµt

t
= 0. (3)

If in addition X has finite variance σ2 then

lim
t→0

ln(ϕX(t)) − iµt

t2
= −σ

2

2
. (4)

Proof. Clearly ϕX(0) = 1 so ln(ϕX(t) is well-defined for t near zero and ln(ϕX(0)) =
0. IfX has finite expectation µ then ϕX(t) is differentiable and ϕ′

X(0) = iµ. Thus

lim
t→0

ln(ϕX(t))

t
= lim

t→0

ln(ϕX(t)) − ln(ϕX(0))

t− 0

=
d

dt
ln(ϕX(t))|t=0

=
ϕ′
X(0)

ϕX(0)

= iµ

or

lim
t→0

ln(ϕX(t))

t
= iµ

From this equation (3) follows upon subtracting

iµ = lim
t→0

iµt

t

from each side of the above equation.
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Next suppose that X has finite variance σ2. Applying l’Hôspital’s rule

lim
t→0

ln(ϕX(t)) − iµt

t2
= lim

t→0

1

2t

(
ϕ′
X(t)

ϕX(t)
− iµ

)

= lim
t→0

ϕ′
X(t) − iµϕX(t)

2tϕX(t)

Now apply l’Hôspital’s rule a second time to get

lim
t→0

ln(ϕX(t)) − iµt

t2
= lim

t→0

ϕ′′
X(t) − iµϕ′

X(t)

2ϕX(t) + 2tϕ′
X(t)

=
ϕ′′
X(0) − (iµ)2

2

=
−(σ2 + µ2) + µ2

2

= −σ
2

2
.

establishing equation (4).

Proof of the Central Limit Theorem. Let Yn be the random variable

Yn =
X̄n − µ

σ/
√
n
.

Let Z be a random variable having a normal distribution with mean zero and variance one.
Then the characteristic function for Z is

ϕZ(t) = e− t2
2

and the distribution function for Z is

FZ(z) =

∫ z

−∞

1√
2π
e−t2/2 dt.

Thus by the continuity theorem, it suffices to show that

lim
n→∞

ϕYn(t) = e− t2
2 . (5)
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Let ϕX(t) denote the common characteristic function shared by {Xn}. The charac-
teristic function of Yn is

ϕYn(t) = E
(
eitYn

)

= E

(

exp

(

it
X̄n − µ

σ/
√
n

))

= E

(

exp

(

it
(X1 +X2 + · · · +Xn) − nµ

σ
√
n

))

= exp

(

−it nµ
σ

√
n

)

E

(

(X1 +X2 + · · · +Xn)
it

σ
√
n

)

= exp

(

−it nµ
σ

√
n

)(

ϕX

(
it

σ
√
n

))n

= exp

[

n ln

(

ϕX

(
t

σ
√
n

))

− iµn

(
t

σ
√
n

)]

Now

n lnϕX

(
t

σ
√
n

)

− iµn

(
t

σ
√
n

)

= n

(

ln

(

ϕX

(
t

σ
√
n

))

− iµ
t

σ
√
n

)

=
t2

σ2




ln
(

ϕX

(
t

σ
√
n

))

− iµ t
σ

√
n

t2

σ2n





−→ − t2

σ2

σ2

2
as n → ∞

= −t
2

2

by (4) of the lemma. From this it follows that

lim
n→∞

ϕYn(t) = lim
n→∞

exp

(

n lnϕX

(
t

σ
√
n

)

− iµn

(
t

σ
√
n

))

= exp

(

−t
2

2

)

proving (5) and hence the result.
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Under the weaker assumption that X has finite mean µ but omitting the assumption
that X have finite variance, we can still conclude that X̄ converges ‘in probability’ (or ‘in
measure’) to µ. This result is known as the Weak Law of Large Numbers.

21.7. Theorem. The Weak Law of Large Numbers.

Suppose that {X1,X2, · · · ,Xn} are independent, identically distributed random variables
having common finite mean µ. Set

X̄n =
1

n
(X1 +X2 + · · · +Xn) .

Then for any ε > 0
lim
n→∞

Pr
(
|X̄n − µ| > ε

)
= 0.

Proof. Let ϕX(t) be the common characteristic function for the random variables {Xn}
and let Yn be the random variable

Yn = X̄ − µ

so that the characteristic function of Yn is

ϕYn(t) = e−iµt
(

ϕX

(
t

n

))n

.

For fixed t ∈ R we may choose n sufficiently large that ln(ϕx(t/n)) is well-defined and

e−iµt
(

ϕX

(
t

n

))n

= exp

(

n

[

ln

(

ϕX

(
t

n

))

− iµ

(
t

n

)])

Now observe that, if t 6= 0,

lim
n→∞

n ln

(

ϕX

(
t

n

))

− iµ

(
t

n

)

= t lim
n→∞

ln
(
ϕX

(
t
n

))
− iµ

(
t
n

)

t/n

= 0

by (3) in the Lemma. As a consequence, the characteristic function of

X̄ − µ
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approaches 1 as n → ∞.
Now if X is the discrete random variable having density function

fX(x) =
{

1 x = 0
0 otherwise

then X has characteristic function 1. The distribution function forX is

FX(x) =
{

0 x ≤ 0
1 0 < x

so FX(x) is continuous everywhere except at x = 0.
Fix ε > 0. By the Continuity Theorem X̄ − µ approaches X as n → ∞ and hence

lim
n→∞

Pr
(
X̄ − µ ≤ −ε

)
= FX(−ε) = 0 7

and
lim
n→∞

Pr
(
X̄ − µ ≤ ε

)
= FX(ε) = 1.

The second inequality implies that

lim
n→∞

Pr
(
X̄ − µ > ε

)
= 0

which, when combined with (7) gives

lim
n→∞

Pr
(
|X̄n − µ| >

)
= 0

as desired.
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21. Central Limit Theorem: Problems.

1. Let X be a continuous random variable having density function

fX(t) =
1

2
e−|t| t ∈ R.

(a) Show that

ϕX(t) =
1

1 + t2

(b) Use the inversion formula to show that

e−|x| =

∫

R

e−ixt 1

π(1 + t2)
dt

(b) Using (b) show that

e−|x| =

∫

R

eixt 1

π(1 + t2)
dt

2. Suppose that X has the Cauchy density

fX(x) =
1

π(1 + t2)
x ∈ R

Show that
ϕX(t) = e−|t| t ∈ R

3. Vessels in the US nuclear submarine fleet cruise for six months at a time without surfacing.
As a consequence the vessels must have sufficient on board inventory of essential items to be
reasonably confident that the inventory will last for the 180 day duration of the cruise. Suppose
that an essential electrical component on the submarine has a lifespan, from initial power-on, that
is exponentially distributed with a mean of 8 days. Once the component burns out, a new one is
immediately installed and power is applied. How many such components should the supply officer
have in inventory in order to have a 99% certainty that the inventory will last the duration of the
cruise?

4. Show that
1

2π

∫ π

−π

ei(j−n)t =
{

1 if j = n
0 otherwise

completing the argument for equation (2).
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polling

22. Applications to Polling

The Central Limit Theorem is critical to the modern practice of opinion polling. In this
section we will present two examples out of many possibilities.

22.1. Example.

After a major event, the news networks usually do ‘instant’ polling, asking 600 randomly
selected respondents a set of questions about the event. The networks then report the
responses, usually including a ‘margin of error’ to the poll. This process can be understood
– and evaluated – using the Central Limit Theorem.

Solution. Generally the questions can be answered ‘yes’ or ‘no.’ Thus any one question
is a Bournoulli trial with p being the proportion of the entire population that would answer
’yes’ given the opportunity. Of course, p is unknown, which is the point of the poll – to try
to estimate p. For simplicity we will suppose that our poll has only one such question.

Since the question is asked of 600 randomly selected respondents, we can think of
each answer as a Bernoulli random variable

Xi =

{
1 if the answer is ‘agree’
0 if the answer is ‘disagree’

The the proportion of the sample responding ‘agree’ is

X̄ =
1

n
(X1 +X2 + · · · ,X600) .

Now if the network reports that the ‘margin of error’ for the poll is, for example, 5%, then
they are reporting that

−0.05 ≤ X̄ − p ≤ +0.05

where p is the probability that a randomly selected respondent would respond ‘agree.’
Since X̄ is deduced from incomplete data (a sample as opposed to a census), there is

necessarily uncertainty built into the estimate X̄ – after all, X̄ is a random variable! Thus
it makes sense to ask how often X̄ would meet the publicized standard of being accurate
within 5%, i.e., to ask what is the value of

Pr (−0.05 ≤ X̄ − p ≤ +0.05). 1
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The Central Limit Theorem gives a way to approximate this probability.
Since each Xi is a Bernoulli trial, the random variables {Xi} are independent and

identically distributed with common mean p and variance p(1− p). Thus we could re-write
(1) as

Pr
(
−0.05 ≤ X̄ − p ≤ +0.05

)
=

= Pr

(

− 0.05
√

p(1 − p)/
√

600
≤ X̄ − p
√

p(1 − p)/
√

600
≤ +

0.05
√

p(1 − p)/
√

600

)

≈ Pr

(

− 0.05
√

600
√

p(1 − p)
≤ Z ≤ +

0.05
√

600
√

p(1 − p)

)

where Z is a standard normal random variable.
Now p(1 − p) is largest when p = 0.5. Thus

0.05
√

600
√

p(1 − p)
≥ 0.05

√
600

0.5

and

− 0.05
√

600
√

p(1 − p)
≤ −0.05

√
600

0.5

so (

− 0.05
√

600
√

p(1 − p)
,

0.05
√

600
√

p(1 − p)

)

⊇
(

−0.05
√

600

0.5
,
0.05

√
600

0.5

)

.

From this,

Pr

(

− 0.05
√

600
√

p(1 − p)
≤ Z ≤ +

0.05
√

600
√

p(1 − p)

)

≥ Pr

(

−0.05
√

600

0.5
≤ Z ≤ 0.05

√
600

0.5

)

= Pr (−2.45 < Z < 2.45)]

= 0.9602.

The last calculation above deduced from either standard normal tables or from built-in
spreadsheet functions. For example, in Microsoft Excel the NORMDIST function returns the
areas under the normal curve.

In particular we can conclude from this that the network’s claim that their poll is ac-
curate to within a 5% tolerance is true for at least 96.02% of all polls constructed with this
methodology. Alternatively, we can conclude that 3.98% of the time a poll constructed with
this methodology will have an error greater than 5%. Overall, the network’s claim seems to
be reasonably credible.
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22.2. Example.

A similar but slightly different problem arises in determining the sample size necessary to
achieve a desired level of accuracy. Typically prior to national elections the major polling
organizations will all report their results with an ‘error’ of ±0.025. In addition, the polls are
generally designed to have this level of ‘error’ with 95% confidence.

More precisely, if a yes/no polling question is asked of n randomly selected respondents,
then the random variables {Xi} given by

Xi =

{

1 if the ith respondent answers ‘yes’
0 otherwise

are independent and each has a Bournoulli distribution with parameter p where p is the
probability that any randomly selected member of the population would answer ‘yes.’

Exactly as before, then, the polling organizations claim that

−0.025 ≤ X̄ − p ≤ +0.025.

In order for this claim to be credible, we need to assess

Pr (−0.025 ≤ X̄ − p ≤ +0.025).

If the above probability is at least 95% then we would say that the poll results have ‘95%
confidence.’ Thus our goal in this example is to choose n in such a way that

Pr (−0.025 ≤ X̄ − p ≤ +0.025) ≥ 0.95. 2

Solution. With exactly the same reasoning as in the previous example, we can approxi-
mate (2) with a standard normal random variable

Pr (−0.025 ≤ X̄ − p ≤ +0.025) ≈ Pr

(

−0.025
√

n

0.2
≤ Z ≤ 0.025

√
n

0.5

)

≥ 0.95

However, once again using either standard normal tables or a spreadsheet,

Pr (−1.96 ≤ Z ≤ +1.96) = 0.95
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confidence leveland hence can conclude that it suffices to choose n so that

0.025
√
n

0.5
= 1.96

or
√
n = 39.2, from which n = 1536.64. Since sample sizes must be integers, we

conclude that we should select n = 1, 537.

A close reading of the results from major polling organizations reveals that they all
use exactly this sample size. Thus 95% of the time the poll results are accurate to within
±2.5%.

If {X1,X2, · · · ,Xn} are independent and identically distributed random variables
having a common mean µ and a common variance σ2, then the central limit theorem
asserts that

X̄ =
1

n

n∑

1

Xi

is approximately a normal random variable having mean µ and variance σ2/n provided
that n is sufficiently large. Thus for fixed γ > 0 one could calculate

Pr

(

X̄ − γσ
√
n
< µ < X̄ +

γσ
√
n

)

(22.1)

by approximating X̄ with an appropriate normal distribution.
Usually the goal is to choose γ > 0 so that the above probability is high, say 95%.

The value of the probability is said to be the “confidence level” of the interval

(

X̄ − γσ
√
n
, X̄ +

γσ
√
n

)

. (22.2)

The table below gives values of γ from the normal distribution for various levels of confi-
dence.
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γ Confidence Levels

± 1.150 75%

± 1.281 80%

± 1.440 85%

± 1.644 90%

± 1.695 91%

± 1.750 92%

± 1.811 93%

± 1.881 94%

± 1.960 95%

± 2.053 96%

± 2.170 97%

± 2.241 97.5%

± 2.326 98%

± 2.575 99%

± 2.807 99.5%

22.3. Example.

Currently all lab samples from a physician’s office are sent to Tests R Us, a commercial
lab specializing in analyzing and producing pathology reports. The physician suspects that
Tests R Us may be cutting corners, and decides to double check their results against the
state laboratory which has essentially a 100% accuracy rate. Of 512 samples, a Tests R

Us incorrectly identifies 32. Find a 98% confidence interval for the proportion of incorrectly
identified samples.

Solution. To do this problem, the random variables in question are Bernoulli trials with an
unknown value for p. However, we can estimate p using the data in the problem; in this
kind of problem X̄ is usually written as p̂ since it is estimating the probability of “success."
Since the variance is then p(1 − p) we can approximate the interval with



p̂− γ

√

p̂(1 − p̂)

n
, p̂+ γ

√

p̂(1 − p̂)

n





with γ chosen so that

Pr



p̂− γ

√

p̂(1 − p̂)

n
< p < p̂− γ

√

p̂(1 − p̂)

n



 = 0.98.
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The Central Limit Theorem implies for large values of n that p̂ has a distribution which is
approximately normal with µ = p and σ2 = p(1 − p). As a consequence we approximate
γ with the value of γ = 2.326 calculated from a normal distribution.

Using the data in the problem, p̂ = 0.063 and so this works out to (0.0381,0.0879).

Note that 22.1 is a probability as long as we are dealing with random variables. In prac-
tice, one actually gathers data and calculates, based on the data, numerical values for X̄.
Substituting these values into 22.2 for X̄ results in a specific interval. This interval either
contains µ or it doesn’t, so once the calculations are done the probability is either zero or
one. Thus in the above example it is correct to say that the probability that p falls in the
interval 

p̂− γ

√

p̂(1 − p̂)

n
, p̂− γ

√

p̂(1 − p̂)

n





is approximately 98% since p̂ represents a random variable. The same statement about
(0.0381,0.0879) would be incorrect.
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22. Applications to Polling: Problems.

1. Obstructive sleep apnoea effects approximately 4% of women and 9% of men between the ages
of 30 and 60. Researchers were interested in estimating the nightly arousals of sleeping partners
of subjects with obstructive sleep apnoea. in a sample of 126 sleeping partners of persons with
sleep apnoea, the researcher found there were an average of 21.05 sleep interruptions in an eight
hour period with a standard deviation of 4.08 interruptions. Find a 95% confidence interval for the
average sleep interruptions of sleeping partners of persons with obstructive sleep apnoea.

2. A researcher was interested in learning whether people believe bad behavior might cause disease.
To test this, the researcher showed 260 persons a short movie in which a narrator described a person
who “lied, cheated and stole” and then subsequently caught an infectious disease. The narrator
then stated ”I believe that serious illnesses happen at least slightly more often to people who deserve
them.” The subjects were then asked if they agreed that illness can be “payback” for bad behavior.
In the sample 50 agreed. Find a 95% confidence interval for the proportion of all persons who
believe that disease can be ”payback” for bad behavior.

3. In 1985 the average US teen-ager drank 0.16 liters of soda per day. By 2005, this average
had increased to 0.63 liters per day. Since soda consumption is associated with low intake of
vitamins and minerals and high intake of sugar and fat, a school counselor starts program to
encourage consumption of fruit juices and milk rather than soft drinks. In a sample of 80 students
participating in the program, the soft drink consumption was 0.53 liters per day with a standard
deviation of 0.06 liters. Find a 95% confidence interval for the average soda consumption of students
participating in the peer-counseling program.

4. At birth infants show a preference for viewing pictures of human faces as opposed to other
objects; however it is not until later that the infants distinguish between faces that are right-side-
up and those that are upside-down. A sample of 53 randomly selected infants aged 3 months were
shown a series of two side-by-side pictures of human faces: one that was right-side-up and another
that was up-side-down. The researchers measured which photo the infants preferred by observing
which they were more likely to look at. In this group, 23 showed a preference for the right-side-up
faces. 95% confidence interval for the proportion of all 3 month-old infants who prefer right-side-up
photos of human faces.
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Laws of Large Numbers

Chernoff, Herman

23. Laws of Large Numbers

Laws of Large Numbers state that the observed frequencies of events tend to approach the
actual probabilities as the number of observations increases. For example, if

{X1, X2, · · · ,Xn}
is a collection of independent and identically distributed random variables having common
mean µ and if we set X̄n to be the sample mean

X̄n =
1

n
(X1,X2, · · · ,Xn)

then the Weak Law of Large numbers tells us for any ε > 0 that

Pr
(∣
∣X̄n − µ

∣
∣
)
> ε) → 0 as n → ∞.

Thinking of the random variables {X1,X2, · · · ,Xn} as being observations from a popula-
tion with unknown mean, the weak law says that we can “learn” the value of µ by calculating
the sample mean. This result is certainly of fundamental theoretical importance. However,
from a practical standpoint it provides no information about how much data is needed (how
large n should be) in order to have our “learned” estimate for µ satisfy a predetermined
bound.

Both of Markov’s and C̆ebysev’s inequalities are attempts to resolve this estimation
problem. Using a technique now known as the Chernoff Method, Herman Chernoff proved
the following improvement on C̆ebysev’s inequality in 1952.

23.1. Theorem. Chernoff Bound.

Suppose that {X1, · · · ,Xn} are Bernoulli random variables having parameter p and set

Sn = X1 +X2 + · · · +Xn.

then for any ε ≥ 1

Pr (S ≥ εnp) ≤ exp ((−ε ln(ε) + ε− 1)np)

=

(

eε−1

εε

)np
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Proof. As with C̆ebysev’s Inequality, this follows from Markov’s inequality, although the
proof is somewhat less straightforward. Markov’s inequality implies that

Pr (S ≥ εnp) = Pr
(
εS ≥ εεnp

)
≤ E(εS)

εεnp
.

Now consider for any i = 1, · · ·n
E
(
εXi
)

= ε0 Pr (Xi = 0) + ε1 Pr (Xi = 1)

= (1 − Pr (Xi = 1)) + εPr (Xi = 1)

= 1 + (ε− 1)Pr (Xi = 1)

(using 1 + x ≤ ex for x ≥ 0)

≤ exp ((ε− 1) Pr (Xi = 1))

= e(ε−1)p

From this
E(εS) = E

(
εX1+···+Xn

)

= E
(
εX1 · · · εXn

)

= E
(
εX1

)
· · ·E

(
εXn

)

≤ e(ε−1)E(X1) · · · e(ε−1)E(Xn)

= e(ε−1)(E(X1)+···E(Xn))

= exp ((ε− 1)np)

Finally,

Pr (S ≥ εnp) ≤ E(εS)

εεnp

≤ exp ((ε− 1)np)

exp (εnp ln(ε))

≤ exp ((−ε ln(ε) + ε− 1)np)

The Chernoff Bound has applications to both networks (see the problems) and to – of
course – games of chance. Consider the following two examples.

23.2. Example.

Estimate the chances of getting 75 or more “heads” in 100 rolls of a fair coin?
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Solution. In this case n = 100 and, since the coin is presumed to be fair, p = 0.5. Since
we want to compute

Pr (S ≥ 75)

we will take ε = 1.5. Then by Chernoff’s inequality

Pr (S ≥ 75) = Pr (S ≥ εnp)

≤ exp ((−ε ln(ε) + ε− 1))np)

= exp ((−1.5 ln(1.5) + .5)50)

= 0.0044

23.3. Example.

Some states offer a game called ‘pick four’ in which players purchase tickets selecting four
numbers in order. Then after a fixed period of time the game ends and one winning combina-
tion is drawn from the possible 10 ,000 numbers (0000 to 9999). Each person who selected
the winning numbers gets a fixed payout.

Of course if N tickets are sold, then the expected number of winners is

N

10, 000.

Thus if 1,000,000 tickets are sold each week, the state could expect 100 winners, on average,
each week. It is a simple matter to design the payout so that, in the long run, the state
makes money on the game.

Regardless of what happens in the long run, however, the state must be prepared to pay
off all of the winners even if, in any given week, more than the expected number win. By
pure chance, for example, it is certainly possible that 1,000 or even 10,000 people could win
the game. How large should the state’s cash reserves to be to have a reasonable certainty of
being able to pay off all the winners in any given week?

Solution. Chernoff’s Bound helps to answer this question. Each ticket may be thought
of as a random variable Xi that assumes the value 1 if it is a winner and the value 0
otherwise. Since the winning numbers are randomly selected, any given ticket has one
chance in 10,000 of winning. Thus Xi can be thought of as Bernoulli random variable with
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parameter p = 0.0001. For the purposes of this example we will assume that the random
variables {Xi} are independent.

Under these conditions, then

X1 + · · ·XN

describes exactly the number of winning tickets. If N tickets are sold, then Chernoff’s
Bound computes

Pr (X1 + · · · +XN ≥ εN · 0.0001)

If ε = 1.25 then Chernoff’s Bound tells us how likely it is that any given week’s payout
exceeds the expected payout by twenty-five per cent.

By Chernoff’s Bound,

Pr (X1 + · · · +XN ≥ 1.25N · 0.0001)

≤ exp ((−1.25 ln(1.25) + 0.25)100)

= 0.055

In other words, there is only a 5.5% chance that there will be 125 or more winners in any
given week. Thus the state only needs to keep a 25% cushion to be reasonably certain of
always having enough cash on hand to pay all of the winners. A 36% cushion would be
sufficient in all but 0.3% of the drawings.

The assumption that the tickets are independent in fact is flawed in the above description.
There are certain numbers that are more or less likely to be selected, and hence not all
numbers are equally likely to be purchased on the tickets. Indeed, by studying the patterns
of number selection and by playing games that divided winnings among the winning tickets,
Chernoff was able to actually show a long-term profit of nearly 7%!

The above example is essentially one of determining the necessary ‘carrying capacity’
for the state to operate the lottery. Similar reasoning applies in any setting that can be
modeled by Bernoulli trials interacting with a system of limited capacity. An obvious and
important example is a telephony network. In this case, some of theN calls on the network
will attempt to use a particular switch (say the one here at OU-Tulsa) and the remainder
will not. This provides a value for the probability that any one of the N calls will attempt to
pass through the OU-Tulsa switch. Chernoff’s then gives a way to calculate the necessary
capacity of the switch to be assured with high probability that all calls will be completed.

The above form of Chernoff’s bound is quite general and widely used. There are
numerous other forms, however, many of which can be deduced using the techniques in
the next two results.
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23.4. Theorem. Generalized Chernoff Bound.

Suppose that {X1, · · ·Xn} are non-negative, independent, identically distributed random
variables having a common moment generating function MX(t). Then for all t ∈ R

Pr

(
X1 + · · ·Xn

n
≥ ξ

)

≤ en(ln(MX(t))−tξ)

Proof. The proof is much the same as for the previous theorem. Then,

Pr

(
X1 + · · ·Xn

n
≥ ξ

)

= Pr
(

et(X1+···Xn) ≥ entξ
)

apply Markov’s inequality...

≤ E
(
et(X1+···Xn)

)

entξ

=
E
(
etX1 · · · etXn

)

entξ

=
Mn

X(t)

entξ

= en(ln(MX(t))−tξ)

It is easy to re-write Chernoff’s inequality in the following form:

Pr
(
X̄n − p ≥ (ε− 1)p

)
≤
(

eε−1

εε

)np

.

This is sometimes called the multiplicative Chernoff bound since the right-hand-side of
the inequality inside the probability function involves the product (ε− 1)p. Sometimes it is
more useful to consider inequalities of the form

Pr
(
X̄n − p ≥ ε

)
.
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Bounds on the above inequality are called additive Chernoff bounds or Hoeffding’s in-

equality since no products are involved. In addition the expression

(

eε−1

εε

)np

while quite sharp is difficult to deal with. Thus Hoeffding’s bound deduces a somewhat
weaker but more tractable bound for the probability. The version of the additive bound we
will deduce states that

Pr
(∣
∣X̄n − p

∣
∣ ≥ ε

)
≤ 2e−2nε2 .

While the proof uses the basic technique pioneered by Chernoff, it is much more technical.
We first prove three preliminary results.

23.5. Lemma.

Suppose that f is a real-valued function defined on the interval [a, b] and that f
′′

is contin-
uous and non-negative on [a, b]. Then if 0 < t < 1

(1 − t)f(a) + tf(b) ≤ f ((1 − t)a+ tb) .

In particular the graph of f lies beneath the chord joining (a, f(a) and (b, f(b)). Such a
function is said to be convex.

Proof. Fix t and set x0 = (1 − t)a+ tb. Expanding f in it’s Taylor’s series about x0 we
obtain

f(x) = f(x0) + f ′(x0)(x− x0) +

∫ x

x0

(x− s)f ′′(s)ds.

The above can also be readily verified by integrating by parts. In view of our assumptions,
the last term must always be non-negative, and so we obtain

f(x) ≤ f(x0) + f ′(x0)(x− x0).

Applying this formula in the case x = a gives

f(a) ≤ f(x0) + f ′(x0)t(a− b)

and in the case x = b gives

f(b) ≤ f(x0) + f ′(x0)(1 − t)(b− a).
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Multiply the first equation by (1 − t) and the second by t and add the equations:

(1 − t)f(a) + tf(b) ≤ (1 − t)f(x0) + t(1 − t)(a− b)f ′(x0) + · · ·
· · · + tf(x0) + t(1 − t)(b− a)f ′(x0)

= f(x0)

= f ((1 − t)a+ tb)

proving the result.

23.6. Lemma.

Let ξ(t) be defined by
ξ(t) = −pt+ ln

(
1 − p+ pet

)
.

Then

ξ(t) ≤ t2

8

for all values of t.

Proof. To prove this we will expand ξ in a Taylor’s series. To this end, note that

ξ′(t) = −p+
pet

1 − p+ pet

= −p+
p

((1 − p)e−t + p)

and that

ξ′′(t) =
p(1 − p)e−t

((1 − p)e−t + p)2

Expanding ξ(t) in a Taylor’s series about t = 0 we obtain for some t0 ∈ [0, t] that

ξ(t) = ξ(0) + ξ′(0)t+ ξ′′(t0)
t2

2
.

Since ξ(0) = 0 = ξ′(0) it follows that

ξ(t) = ξ′′(t0)
t2

2
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for some t0 ∈ [0, t]. But now observe that

ξ′′(t) =
p(1 − p)e−t

((1 − p)e−t + p)2

=
p

((1 − p)e−t + p)

(1 − p)e−t

((1 − p)e−t + p)

=
p

((1 − p)e−t + p)

(

1 − p

((1 − p)e−t + p)

)

which is in the form u(1 − u) with

u =
p

((1 − p)e−t + p)
.

Since u(1 − u) is has a maximum value of 1/4 it follows that

ξ(t) = ξ′′(t0)
t2

2

≤ 1

4

t2

2

showing ξ(t) ≤ t2/8 as desired.

23.7. Lemma.

Suppose that E(X) = 0 and a < X < b. Then for any s > 0

E
(
esX

)
≤ es

2(b−a)2/8.

Proof. For 0 ≤ λ ≤ 1 and fixed x with a < x < b define

λ =
b − x

b− a
.

Then for any s > 0 it follows that

sx = λsa+ (1 − λ)sb.
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Since eu is a convex function in u, this implies that

esx ≤ b− x

b− a
esa +

x− a

b − a
esb.

In particular then since E(X) = 0

E
(
esX

)
≤ b

b− a
esa − a

b− a
esb.

Taking

p = − a

b− a

and using the fact that
−ps(b− a) = as

we can rewrite this as

E
(
esX

)
≤ (1 − p)esa + pesb

=
(

1 − p+ pes(b−a)
)

e−ps(b−a)

= exp
(

−ps(b− a) + ln
(

1 − p+ pes(b−a)
))

(23.1.)

Now set ξ(t) to be the value of the exponential function with t = s(b− a):

ξ(t) = −pt+ ln
(
1 − p+ pet

)
.

By the Lemma

ξ(t) ≤ t2

8

for all values of t.
To complete the proof, set t = s(b− a) and substituting into (23.1):

E
(
esX

)
≤ exp

(

−ps(b− a) + ln
(

1 − p+ pes(b−a)
))

= exp (ξ(s(b− a))

≤ exp

(
s2(b− a)2

8

)
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In view of the above lemma, we can now state and prove Hoeffding’s inequality.

23.8. Theorem. Hoeffding’s Inequality (I).

Let {X1, X2, · · · ,Xn} be independent and identically distributed random variables having
common expectation µ. Suppose for some number R > 0 that 0 ≤ Xi ≤ R. If

X̄n =
1

n
(X1 +X2 + · · · +Xn)

then for every ε > 0

Pr
(
X̄n − µ ≥ ε

)
≤ exp

(−2nε2

R2

)

and

Pr
(
µ− X̄n ≥ ε

)
≤ exp

(−2nε2

R2

)

Combining the two inequalities gives

Pr
(∣
∣X̄n − µ

∣
∣ ≥ ε

)
≤ 2 exp

(−2nε2

R2

)

In the special case that each Xi is a Bernoulli trial (and hence that R = 1) we obtain
the following special case.
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23.9. Theorem. Hoeffding’s Inequality (II).

Let {X1, X2, · · · ,Xn} be independent Bernoulli trials having common probability of success
p. If

X̄n =
1

n
(X1 +X2 + · · · +Xn)

then for every ε > 0

Pr
(
X̄n − p ≥ ε

)
≤ e−2nε2

and
Pr

(
p− X̄n ≥ ε

)
≤ e−2nε2 .

Combining the two inequalities gives

Pr
(∣
∣X̄n − p

∣
∣ ≥ ε

)
≤ 2e−2nε2

Proof. We prove only the first inequality in the first version of the inequality. The second
inequality is deduced in exactly the same way, and the last is the sum of the first two.

For each i take Ui = Xi − µ. Then
• E(Ui) = 0 for each i;
• −µ ≤ Ui ≤ R− µ for each i.

Then via the lemma for each i and any s > 0

E
(
esUi

)
≤ es

2R2/8.
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Legendre transformNow for any ε > 0 and any s > 0 we can apply Markov’s inequality

Pr
(
X̄n − p > ε

)
= Pr

(
n∑

i=1

Ui > nε

)

= Pr

(

exp

(

s

n∑

i=1

Ui

)

> enεs

)

≤ E
(
exp

(
s
∑n
i=1 Ui

))

ensε

=

∏n
i=1 E (exp (sUi))

ensε

≤ ens
2R2/8

ensε

= exp

(
ns2R2

8
− nsε

)

Now
ns2R2

8
− nsε

assumes a minimum value of −2nε2

R2 when s = 4ε/R2 which completes the proof.

We remark that in proving Hoeffding’s inequality the essential technique involves ex-
amining

I(ξ) = min
t∈R+

{(ln(MX(t)) − tξ)}

in the generalized Chernoff bound. The function I(ξ) above is the Legendre transform of
ln (MX(t)).
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23. Laws of Large Numbers: Problems.

1. Suppose that a dishonest gambler wishes to produce a die on which the number “6” never
appears when the die is rolled. However the gambler is uncertain how to do this, so he weights the
die and then rolls it 25 times to see if a “6” ever appears. If it never appears in these 25 tries, then
he assumes that he has successfully rigged the die, otherwise he repeats the process. Comment on
the gambler’s strategy for “learning”

Pr (rolling a six).

In particular what are the chances that the gambler stops after 25 trials even if the die is still fair?

2. Suppose that a coin is flipped 100 times and we observe 75 heads and 25 tails. Estimate the
chances of getting 75 or more heads in 100 rolls of a fair die. Is this evidence that the coin is biased
in favor of heads?

3. Repeat the pick four example but with the following assumptions:
(a) Suppose that the number of players is N = 500, 000.
(b) Suppose that the number of players is N = 250, 000.
(c) Suppose that the number of players is N = 100, 000.

Explain what, if any, difference you see in the above answers.

4. Let {X1, X2, · · · , Xn} be independent Bernoulli trials having common probability of success p.
Let S =

∑n

i=1
Xi and let δ be a real number with 0 < δ < 1.

(a) For arbitrary α > 0 use the Chernoff technique (applied to eαS) to show that

Pr (S ≥ (1 + δ)np) ≤
(

1 + p(eα − 1)

e(1+δ)αp

)n

.

(b) Use the fact that 1 + x ≤ ex for x ≥ 0 to conclude that

Pr (S ≥ (1 + δ)np) ≤ exp (np(eα − 1− (1 + δ)α)) .

(c) Show that the function ξ(α) = eα − 1− (1 + δ)α) has minimum value δ − (1− δ) ln(1− δ) and
hence that

Pr (S ≥ (1 + δ)np) ≤ exp (δ − (1− δ) ln(1 − δ)) .

(d) Expand δ − (1− δ) ln(1− δ) in a Taylor’s series to conclude that

δ − (1 − δ) ln(1 − δ) ≤ − δ2

3
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and hence that

Pr (S ≥ (1 + δ)np) ≤ exp

(

− δ2

3

)

.

While this provides a sharper estimate than the corresponding one-sided inequality in Ho-
effding’s inequality, it lacks the symmetry needed to deduce the version with absolute values
(which is needed for confidence intervals).

5. Let {Xn}1000
n=1 be a collection of independent Bernoulli random variables having parameter 0.84.

(a) Use Markov’s inequality to estimate

Pr (X1 + X2 + · · ·X1000 ≥ 900)

(b) Use C̆ebysev’s inequality to estimate

Pr (X1 + X2 + · · ·X1000 ≥ 900)

(c) Use the Chernoff Bound to estimate

Pr (X1 + X2 + · · ·X1000 ≥ 900)

(d) Which gives the better estimate?

(For example, X1 + X2 + · · ·X1000 might count the number of college applicants with ACT scores
higher than 25. This would assist a University in estimating their scholarship budget.)

6.

(a) Suppose that a telephony network handles one billion calls on a typical day. We are designing
a switch on the network that will handle, on average, one million of those calls. If we design
the switch with 1% over-capacity, i.e., with the ability to handle 1,001,000 calls, then estimate
the chances that we will ever exceed the capacity of the switch.

(b) What assumptions did you make about the distribution and independence of the calls? Are
these reasonable assumptions? Do you think these assumptions would be more or less reason-
able for a data network as opposed to a telephony network?
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classification rule

24. Application to Learning Theory

Many prediction problems involve using a set of observations X in order to predict an out-
come Y . For example, one might use atmospheric conditions such as barometric pressure,
humidity, temperature, wind direction and speed (compiled into a composite measure X)
to predict whether or not it is going to rain (so Y is “rain” or “no rain.”Other examples might
involve using characteristics of an email message to decide whether or not it is spam, or
patient symptoms to decide whether or not a disease is present, or network characteristics
to decide whether or not a signal is successfully transmitted.

In all of these cases, X and Y are subject to random fluctuations and so can be
thought of as random variables. The prediction involves observing the outcome X and
then applying a decision rule – based on the outcome – to predict the value of Y . In all
the examples we have given Y is a binary classification and so we may assume that Y
assumes the values 0 or 1. A decision rule can then be thought of as a function γ

γ : X 7→ {0, 1}.

The function γ is sometimes called a classification rule since it classifies each X by
using X to predict one of the two binary outcomes. Thus the assignment of X to γ(X)
places X in the “0” class or in the “1” class.

Of course there are many different ways in which one might combine the characteris-
tics making up X in order to predict the outcome Y . Further the relationship between the
predictor (X) and the outcome (Y ) cannot generally expected to be perfect, so that there
will always be some observations X for which γ(X) 6= Y , i.e., γ(X) will occasionally
err. Thus any prediction scheme γ(X) necessarily must assess the risk associated with
random fluctuations in both the predictor X and the outcome Y as well as the inherent
inaccuracies of the predictor.

Suppose that there are two possible decision rules, γ1 and γ2. The problem we will
discuss in this section deals with deciding which of the two rules is preferable, or less “risky.”
Thus a more rigorous understanding of “risk” is needed.

Generally the framework for assessing the risk associated with a rule γ involves
a collection of test data. The test data can be thought of as a set of observations
{(X1, Y1), (X1, Y2), · · · (Xn, Yn)} – for example composite atmospheric conditions (Xi)
for day i and whether or not it rained (Yi) on day i. Each test observation Xi results in a
prediction γ(Xi). If γ(Xi) = Yi then the rule γ accurately predicted the outcome, while
if γ(Xi) 6= Yi the rule failed. The empirical loss is the number of times that rule γ is
not accurate in these n trials, while the empirical risk is the average loss. Given two
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weak law of large numberscompeting prediction rules γ1 and γ2 we would then prefer the less risky, i.e., the one with
smaller empirical risk.

While this framework makes intuitive sense for choosing between γ1 and γ2, before
verifying that it is also reasonable mathematically it is necessary to provide a somewhat
more structured context.

24.1. Definition.

The loss function is the mapping ` : R × R → {0, 1} given by

`(x, y) =

{
0 if x = y
1 if x 6= y

In the sequel we will suppose that we have two probability spaces (Ω1, E1,Pr 1) and
(Ω2, E2,Pr 2) and two random variables X : Ω1 → R and Y : Ω2 → {0, 1} defined on
Ω1 and Ω2 respectively. The random variables (X,Y ) then have a joint distribution. Our
test data {(X1, Y1), (X1, Y2), · · · (Xn, Yn)} will be assumed to be an independent and
identically distributed collection from this joint distribution ϕXY (x, y). In most practical ap-
plications very little is known about the joint distribution. Indeed, the learning problem can
be conceived at least in part as the problem of deducing properties of the joint distribution
from the test data.

24.2. Definition.

Let γ : R → {0, 1}. The loss associated with γ and (X,Y ) is `(γ(X), Y ) and the
risk associated with γ is

R(γ) = E(`(γ(X),Y ))

Thus given two rules γ1 and γ2 we would prefer the one with smaller risk. Since the
underlying distribution is unknown, this criteria does not lead to a directly computable con-
clusion. However, if we gather sufficient test data the decision may be based on empirical
evidence. Since test data is necessarily incomplete – not being census data – the empirical
evidence necessarily includes random error. The weak law of large numbers[and learning
theory] tells us that this error vanishes as n → ∞ and Hoeffding’s inequality quantifies the
rate at which the error vanishes.
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agnostic learning

24.3. Definition.

Suppose that
{(X1, Y1), (X1, Y2), · · · (Xn, Yn)}

are independent and identically distributed random variables as described above. We will call
{(X1, Y1), (X1, Y2), · · · (Xn, Yn)} our test set. The empirical loss associated with
a test set is the random variable

n∑

i=1

`(γ(Xi), Yi)

and the empirical risk is the random variable

R̂n(γ) =
1

n

n∑

i=1

`(γ(Xi), Yi)

Assuming that R(γ) < ∞, then it follows (see Section (19.1), p. 166) that

E (Rn(γ)) = R(γ)

i.e., that R̂n(γ) is an unbiased estimator for R(γ).
Further the weak law of large numbers tells us for any ε > 0 that

lim
n→∞

Pr
(∣
∣R(γ) − R̂n(γ)

∣
∣ > ε

)

= 0.

Thus it is possible to learn the risk associated with γ from the empirical risk. The basic
question is “how fast does R̂n(γ) converge to R(γ)?” This is where Hoeffding’s inequality
comes into play. This approach is sometimes called agnostic learning since it relies on
no prior assumptions about the underlying distribution of (X,Y ) (other than that the risk is
finite).

212 November 18, 2017



24.4. Theorem.

Suppose that {(X1, Y1), (X1, Y2), · · · , (Xn, Yn)} are independent and identically dis-
tributed random variables as described above and suppose that R(γ) < ∞. Let ε > 0 be
arbitrary. Then

Pr
(

R̂(γ) − R(γ) ≥ ε
)

≤ e−2nε2

and
Pr

(

R(γ) − R̂(γ) ≤ ε
)

≤ e−2nε2 .

Thus
Pr (| R̂(γ) − R(γ) |≥ ε) ≤ 2e−2nε2

Proof. We consider the random variables

{`(γ(X1), Y1), `(γ(X1), Y1), · · · , `(γ(Xn), Yn)}

so

E(R̂(γ)) = E

(

1

n

n∑

i=1

`(γ(Xi), Yi)

)

= E(`(γ(X),Y ))

= R(γ).

Further for each i
0 ≤ `(γ(Xi), Yi) ≤ 1.

Thus the assumptions of Hoeffding’s inequality (23.8) apply with R = 1 and so (24.4) is
just a restatement of (23.8).

The value of (24.4)is that it provides a way of estimating the risk for any decision rule γ
up to any desired degree of accuracy ε. The estimate depends only on the size of the test
sample and not on any other a priori assumptions or knowledge about the underlying dis-
tribution. Thus (24.4)gives a practical way to evaluate the risk of any classification scheme
γ and to differentiate between different classification schemes γ1 and γ2.

Given that one can empirically estimate risks, a related question becomes whether
or not there is a classification scheme that minimizes risk. It turns out that there is such a
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scheme, although the proof is not constructive since it relies on knowledge of the underlying
distribution.

24.5. Definition.

The Bayes’ risk is the infimum of the risk for all classifiers under consideration:

R∗ = inf
γ
R(γ).

24.6. Definition.

The Bayes’ classifier is the following mapping:

γ∗(x) =
{

1 if η(x) ≥ 0.5
0 otherwise

where
η(x) = Pr (Y = 1

∣
∣
∣X = x).

Using these concepts we can prove that the Bayes’ classifier is the optimal classifier
in the sense that it attains the value of Bayes’ risk.

24.7. Theorem.

The Bayes’ classifier γ∗ attains the Bayes’ risk, i.e.,

R(γ∗) = R∗ = inf
γ
R(γ).

Proof. Let g be any classifier. We will first show that

Pr (g(x) 6= Y
∣
∣
∣X = x) ≥ Pr (γ∗(x) 6= Y

∣
∣
∣X = x).
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For any g and any x

Pr (g(x) 6= Y
∣
∣
∣X = x) =

= 1 − Pr (g(x) = Y
∣
∣
∣X = x)

= 1 −
(

Pr (Y = 1, g(x) = 1
∣
∣
∣X = x) + Pr (Y = 0, g(x) = 0

∣
∣
∣X = x)

)

= 1 −
(

1{g(x)=1} Pr (Y = 1
∣
∣
∣X = x) + 1{g(x)=0} Pr (Y = 0

∣
∣
∣X = x)

)

= 1 −
(
1{g(x)=1}η(x) + 1{g(x)=0}(1 − η(x))

)

In particular,

Pr (γ∗(x) 6= Y
∣
∣
∣X = x) = 1 −

(
1{γ∗(x)=1}η(x) + 1{γ∗(x)=0}(1 − η(x))

)
.

Upon taking the difference it follows that

Pr
(
g(x) 6= Y

∣
∣
∣X = x

)
− Pr

(
γ∗(x) 6= Y

∣
∣
∣X = x))

)

= η(x)
[
1{γ∗(x)=1} − 1{g(x)=1}

]
+ (1 − η(x))

[
1{γ∗(x)=0} − 1{g(x)=0}

]

= η(x)
[
1{γ∗(x)=1} − 1{g(x)=1}

]
+ (1 − η(x))

[
1 − 1{γ∗(x)=1} − 1 + 1{g(x)=1}

]

= η(x)
[
1{γ∗(x)=1} − 1{g(x)=1}

]
− (1 − η(x))

[
1{γ∗(x)=1} − 1{g(x)=1}

]

= (2η(x) − 1)
(
1{γ∗(x)=1} − 1{g(x)=1}

)

For future reference we summarize the above as

Pr
(
g(x) 6= Y

∣
∣
∣X = x

)
− Pr

(
γ∗(x) 6= Y

∣
∣
∣X = x))

)

= (2η(x) − 1)
(
1{γ∗(x)=1} − 1{g(x)=1}

)
(24.1.)

Recalling that

γ∗(x) =
{

1 if η(x) ≥ 0.5
0 otherwise

we can distinguish two cases.

Case I. η(x) ≥ 0.5

In this case

(2η(x) − 1)
︸ ︷︷ ︸

≥0




1{γ∗(x)=1}
︸ ︷︷ ︸

=1

− 1{g(x)=1}
︸ ︷︷ ︸

=0 or 1






︸ ︷︷ ︸

≥0
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Case II. η(x) < 0.5

(2η(x) − 1)
︸ ︷︷ ︸

<0




1{γ∗(x)=1}
︸ ︷︷ ︸

=0

− 1{g(x)=1}
︸ ︷︷ ︸

=0 or 1






︸ ︷︷ ︸

≤0

Thus in either case

Pr
(
g(x) 6= Y

∣
∣
∣X = x

)
≥ Pr

(
γ∗(x) 6= Y

∣
∣
∣X = x))

)

To see that this suffices to prove the result, let ϕXY be the joint density of X and Y .
Then by definition

ϕXY (x, y) = ϕX(x)ϕY |X(y|x).
Then for any classifier g

`(g(x), y)ϕXY (x, y) = `(g(x), y)ϕX(x)ϕY |X(y|x)
= `(g(x), y)ϕX(x)Pr (Y = y

∣
∣
∣X = x)

= ϕX(x)Pr (Y 6= g(x)
∣
∣
∣X = x).

In the above we use the observation that the random variable Y |X=x is discrete and hence
that the density function ϕY |X(y|x) evaluated at y is just the probability that Y |X=x as-
sumes the value y.

Now if, for example, X is continuous the conclusion follows from the fact that for all
classifiers g

R(g) = E(`(g(X),Y ))

=
∑

y

∫

R

`(g(x), y)ϕXY (x, y)dx

=
∑

y

∫

R

ϕX(x) Pr (Y 6= g(x)
∣
∣
∣X = x)dx

≥
∑

y

∫

R

ϕX(x) Pr (Y 6= γ∗(x)
∣
∣
∣X = x)dx

=
∑

y

∫

R

`(γ∗(x), y)ϕXY (x, y)dx

= E(`(γ∗(X), Y ))

= R(γ∗)
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The proof for the case that X is discrete is similar.

It is not possible generally to calculate the Bayes’ classifier γ∗ since ϕXY is not known.
However the definition of γ∗

γ∗(x) =
{

1 if η(x) ≥ 0.5
0 otherwise

where
η(x) = Pr (Y = 1

∣
∣
∣X = x)

does suggest that one can approximate γ∗ by approximating η. That is the content of the
next theorem.

24.8. Theorem.

Let η̃ : R → [0, 1] be an approximation of η. If

g(x) =
{

1 if η̃(x) ≥ 0.5
0 otherwise

then
R(g) − R∗ ≤ E (|η̃(X) − η(X)|)

Proof. We apply (24.1):

Pr
(

g(X) 6=Y
∣
∣X = x

)

− Pr
(

γ∗(X) 6= Y
∣
∣X = X

)

= (2η(x) − 1)
(
1{γ∗(x)=1} − 1{g(x)=1}

)

= |2η(x) − 1|1{γ∗(x) 6=g(x)}

=
1

2

∣
∣
∣
∣
η(x) − 1

2

∣
∣
∣
∣
1{γ∗(x) 6=g(x)}

Notice next for any classifier g we can apply the definition of expectation to the discrete
random variable `(g(X), Y ) to obtain

R(g) = E(`(g(X),Y )) = Pr (g(X) 6= Y )
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Then using the definition of conditional densities as in the previous theorem

R(g) − R∗ = Pr (g(X) 6= Y ) − Pr (γ∗(X) 6= Y )

=

∫

R

(

Pr
(

g(x) 6= Y
∣
∣X = x

)

− Pr
(

γ∗(x) 6= Y
∣
∣X = X

))

ϕX(x) dx

=

∫

R

1

2

∣
∣
∣
∣
η(x) − 1

2

∣
∣
∣
∣
1{γ∗(x) 6=g(x)}ϕX(x)dx

Now if γ∗(x) 6= g(x) then either

(

g(x) = 1 and γ∗(x) = 0
)

=⇒
(

η̃(x) ≥ 0.5 and η(x) < 0.5
)

or else

(

g(x) = 0 and γ∗(x) = 1
)

=⇒
(

η̃(x) < 0.5 and η(x) ≥ 0.5
)

In either case

∣
∣
∣
∣
η(x) − 1

2

∣
∣
∣
∣
1{γ∗(x) 6=g(x)} ≤ |η(x) − η̃(x)|1{γ∗(x) 6=g(x)}.

On the other hand, if γ∗(x) = g(x) then

Pr
(

g(x) 6= Y
∣
∣X = x

)

− Pr
(

γ∗(x) 6= Y
∣
∣X = X

)

= 0.

Thus

R(g) − R∗ ≤
∫

R

2|η(x) − η̃(x)|1{γ∗(x) 6=g(X)}ϕX(x)dx

≤
∫

R

2|η(x) − η̃(x)|ϕX(x)dx

= 2E(|η̃(x) − η(X)|)
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training set

Einstein

Learning theory has evolved into a rich literature and this section only touches on the most
basic concepts. Our discussion has assumed that we already have candidate classifiers
γ to consider. Deducing a candidate classifier from data is much more difficult, especially
where real-time computational constraints are imposed. Typically a training set is first
used to deduce a candidate classifier using some algorithm, then a test set is used to as-
sess the risk of that classifier. These topics belong to a more advanced course specializing
in machine learning.

We comment further that we have restricted our approach to binary outcomes Y .
There are other possible learning problems. A classical example is estimate the signal f
under noisy conditions:

Y = f(X) +W

whereX is continuous and W is random noise independent ofX. The loss function in this
case is often

`(X,Y ) = ‖X − Y ‖2

and the signal estimation becomes a least-squares regression problem. This case is further
complicated since the signal is often governed by an evolution equation such as

∫ t

0

X(s)ds+X(t) = W (t)

The forcing function W (t) might represent, for example, “white noise”, introduced by Ein-
stein in his studies of Brownian motion. Again, these are topics for more advanced courses.
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stochastic process

phase space

state space

time series

Markov property!for chains

25. Two State Markov Chains

Broadly speaking, a stochastic process is a random function. These functions generally fall
into two classes:
(a) Chains, in which the domain of the function is the integers; and
(a) Processes, in which the domain of the function is the real numbers.

In the former case we usually write X(n) or Xn and in the latter case we usually write
X(t). In each case, X represents a random variable. The domain (either Z or R) is
sometimes called the phase space, while the range is called the state space. Stochastic
processes are also sometimes called time series.

There are many examples of stochastic processes. The closing prices in a stock ex-
change, the spot price of oil, and the number of telephone calls passing through a switch
at time t are just a few of the many examples that arise in applications.

We will begin by studying chains X(n) or Xn because of their greater simplic-
ity. However, chains are also useful in approximating more complex continuous-time pro-
cesses.

With no further assumptions, very little could be said about random chains. However
many examples of interest share an important property: the future evoltuion of the system
(the value ofX(n+1)) can be predicted knowing only the present state of the system (the
value of X(n)); knowledge of the history prior to the present is irrelevant. Mathematically,
this says that

Pr (X(n+ 1) = y
∣
∣X(0) = x0, X(1) = x1, · · ·
· · ·X(n − 1) = xn−1,X(n) = xn) =

= Pr (X(n+ 1) = y
∣
∣X(n) = xn).

This is called the Markov property and we will assume that this property holds hence-
forward.

In this section we will consider a very simple example of a Markov Chain. While the
example is simple, it illustrates some of the most basic concepts and questions that arise
in the study of Stochastic Processes. The simplicity of the example has the additional
advantage of providing an elegant solution. While the solution we present generalizes, it is
usually too complex computationally to be useful for more complex processes.
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25.1. Example. Two-state Markov chain.

Suppose that a machine has two states, working and not working. Suppose further that

Pr (Machines works today
∣
∣
∣Machine did not work yesterday) = p

and
Pr (Machines does not work today

∣
∣
∣Machine did work yesterday) = q.

Suppose further that whether or not the machine works today depends only on whether or
not it worked yesterday. Then if

X(n) =

{
0 machine is not working on day n
1 machine is working on day n

we can conclude
Pr (X(n) = 1

∣
∣X(n− 1) = 0) = p

and
Pr (X(n) = 0

∣
∣X(n− 1) = 1) = q.

Since the machine either works or not

Pr (X(n) = 0
∣
∣X(n− 1) = 0) = 1 − p

and
Pr (X(n) = 1

∣
∣X(n− 1) = 1) = 1 − q.

Finally, we suppose that these probabilities do not depend on the particular day when we we
look:

Pr (X(n+m) = 1
∣
∣X(n+m− 1) = 0) = p

and
Pr (X(n+m) = 0

∣
∣X(n+m− 1) = 1) = q.

for all choices of n,m > 0.
Are there any possible conclusions about the long term behavior of this machine?

For example, can we conclude in the long run what the chances are that the machine
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will be out of service? This is analogous to asking if the limit

lim
n→∞

Pr (X(n) = 0)

exists. If the limit exists, we would certainly like to know what it is. Another question might
be how many days, on average, is the machine in service, i.e., is there a value to the limit

lim
n→∞

E

(

1

n+ 1

n∑

k=0

X(k)

)

.

Intuitively one might expect these two limits to be related in some manner, and it turns out
that they are.

When the machine is first installed, there is some initial probability that it will work (or
not) on installation. In termsX(n) this can be described by

π0(k) = Pr (X(0) = k)

where k can assume values from the set {0, 1}. For example, if the machine is manufac-
tured with a high degree of reliability, then we might have

π0(0) = 0.02 and π0(1) = 0.98.

More broadly speaking, πn is the distribution of Xn, i.e.,

πn(k) = Pr (X(n) = k)

where k can assume values from the set {0, 1}.
Given an initial probability distribution π0 we can easily calculate the probabilities that

the machine is working or not on day one:

Pr (X(1) = 1) = Pr (X(1) = 1 and X(0) = 0) + Pr (X(1) = 1 and X(0) = 1)

= Pr (X(1) = 1
∣
∣
∣X(0) = 0)Pr (X(0) = 0) + · · ·

· · · + Pr (X(1) = 1
∣
∣
∣X(0) = 1)Pr (X(0) = 1)

= pπ0(0) + (1 − q)π0(1)

= p(1 − π0(1)) + (1 − q)π0(1)

= p+ (1 − p− q)π0(1).
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In fact a more general result follows readily.

25.2. Proposition.

For n > 1

Pr (X(n) = 1) =
p

p+ q
+ (1 − p− q)n

(

π0(1) − p

p+ q

)

.

Proof. We can proceed by induction, with the previous calculation providing a basis for
the case n = 1:

Pr (X(1) = 1) = p+ (1 − p− q)π0(1)

=
p(p+ q)

p+ q
+ (1 − p− q)1

(

π0(1) − p

p+ q

)

+ (1 − p− q)
p

p+ q

=
p

p+ q
+ (1 − p− q)1

(

π0(1) − p

p+ q

)

.

Since this bases the induction in the case n = 1 we may now assume the case n and
deduce the case n+ 1:

Pr (X(n+ 1) = 1) = Pr (X(n+ 1) = 1 and X(n) = 0) + · · ·
· · · + Pr (X(n+ 1) = 1 and X(n) = 1)

= Pr (X(n+ 1) = 1
∣
∣
∣X(n) = 0) Pr (X(n) = 0) + · · ·

· · · + Pr (X(n+ 1) = 1
∣
∣
∣X(n) = 1) Pr (X(n) = 1)

= pPr (X(n) = 0) + (1 − q)Pr (X(n) = 1)

= p+ (1 − p− q)Pr (X(n) = 1)

= p+ (1 − p− q)

(
p

p+ q
+ (1 − p− q)n

(

π0(1) − p

p+ q

))

=
p

p+ q
+ (1 − p− q)n+1

(

π0(1) − p

p+ q

)

.
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25.3. Corollary.

For n > 1

Pr (X(n) = 0) =
q

p+ q
+ (1 − p− q)n

(

π0(0) − q

p+ q

)

.

25.4. Corollary.

If 2 > p+ q > 0 then

lim
n→∞

Pr (X(n) = 1) =
p

p+ q

and
lim
n→∞

Pr (X(n) = 0) =
q

p+ q
.

Notice that if p + q = 2, then a machine that is working today is always broken
tomorrow and a machine that is broken today is always working tomorrow. Thus no matter
what the initial state, the value of X(n) oscillates between zero and one and hence there
can be no limiting behavior.

Note that for any x, y ∈ {0,1} we can define

p(x, y) = Pr (X(1) = y
∣
∣
∣X(0) = x).

The function p gives the transition probabilities for the Markov Chain. The transition
probabilities in turn give rise to a transition matrix P . In our example,

P =

(
1 − p p
q 1 − q

)

Note that if we multiply the row vector

(π0(0) π0(1) )

by the transition matrix, we obtain the state of the system at time one:

(π1(0) π1(1) )
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i.e.,

(π0(0) π0(1) )

(
1 − p p
q 1 − q

)

=

(
(1 − p)π0(0) + qπ0(1)
pπ0(0) + (1 − q)π0(1)

)

.

More generally,

(Pr (X(n) = 0) Pr (X(n) = 1) ) = ( π0(0) π0(1) )

(
1 − p p
q 1 − q

)n

25.5. Definition.

A stationary distribution for the two-state Markov Chain is a distribution on {0, 1}
satisfying

(π(0) π(1) )

(
1 − p p
q 1 − q

)

= (π(0) π(1) ) .

25.6. Proposition.

Suppose that
(π(0) π(1) )

satisfies
lim (πn(0) πn(1) ) = (π(0) π(1) ) .

Then (π(0) π(1) ) is a stationary distribution.

Proof. Suppose that the initial distribution corresponds to (π(0) π(1) ). Then

lim
n→∞

(π(0) π(1) )P n = lim
n→∞

(πn(0) πn(1) )

= (π(0) π(1) )

Then it follows that

(π(0) π(1) )P = lim
n→∞

(π(0) π(1) )P nP

= lim
n→∞

(π(0) π(1) )P n+1

= (π(0) π(1) ) .
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In other words, if a limiting distribution exists, then it must also be a stationary distri-
bution. Under mild assumptions, the converse is true, i.e., that if a stationary distribution
exists then it is a limiting distribution. We will illustrate this by using some results from linear
algebra.

There is a technique from linear algebra that reduces the problem of finding the sta-
tionary distribution to one of finding the eigenvalues and corresponding eigenvectors of the
transition matrix. To do this we need to recall the following theorem.

25.7. Theorem.

Let M be a two-by-two matrix and suppose that M has two distinct eigenvalues λ1 and λ2

with corresponding eigenvectors v1 and v2. Let E be the matrix whose columns consist of
v1 and v2 respectively and let D be the matrix

D =

(
λ1 0
0 λ2

)

.

Then
M = E ·D · E−1

and, in particular,

Mn = E

(
λn1 0
0 λn2

)

E−1.

25.8. Example.

In our example,

M =

(
1 − p p
q 1 − q

)

We will find the eigenvalues, eigenvectors and the matrix E and E−1 to illustrate the above
theorem.

Solution. For this choice of M the characteristic equation is

λ2 − (2 − p− q)λ+ 1 − p− q = 0
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which leads to eigenvalues of

λ1 = 1 and λ2 = 1 − p− q

with corresponding eigenvectors of
(

1
1

)

and

(
−p
q

)

.

Then

D =

(
1 0
0 1 − p− q

)

and

E =

(
−p 1
q 1

)

.

Assmuing that p+ q > 0, it then follows that

Mn = E ·Dn · E−1

=

(
1 −p
1 q

)

·
(

1 0
0 (1 − p− q)n

)

· 1

p+ q

(
q p

−1 1

)

.

Assuming that 2 > p+ q > 0 it follows that

lim
n→∞

Mn = lim
n→∞

E ·
(

1 0
0 (1 − p− q)n

)

E−1

= E ·
(

1 0
0 0

)

· E−1

=
1

p+ q

(
q p
q p

)

Now for any initial distribution

lim
n→∞

(πn(0) πn(1) ) = lim
n→∞

(π0(0) π0(1) )Mn

= (π0(0) π0(1) )
1

p+ q

(
q p
q p

)

=
( q
p+q

p
p+q

)

since
π0(0) + π0(1) = 1.

This establishes both the existence of the stationary distribution and the fact that

lim
n→∞

(πn(0) πn(1) ) =
( q
p+q

p
p+q

)
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Many of the results of interest about Markov Chains can be deduced using linear alge-
bra techniques similar to the above. While this is an elegant and self-contained approach,
we will restrict this approach to the problem sets. There are two main reasons reasons for
not using this approach in the main arguments in this text. First, this approach presumes
the reader is familiar with fundamental concepts from linear algebra such as canonical
forms and diagonalization which may not be true for all or even most readers. The sec-
ond reason has to do with the values some of the most important processes can assume.
In our present example, the process {X(n)} could assume only two values: 0 or 1. As
we shall see in the next section, there are many important examples of random process
which can assume a finite number of values ({0, 1, · · · , n}) or an infinite number of val-
ues ({0, 1, · · · , n, · · ·}). In the latter case the resulting “matrix”of transition probabilities
is infinite rather than finite. While there are advanced algebraic techniques for analyzing
the behavior of such matrices, they will certainly be unfamiliar to most readers of this text.
For these reasons, we relegate the use of linear algebra in analyzing Markov Chains to the
exercies.
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25. Two State Markov Chains: Problems.

1. In the two-state chain, find
Pr (X1 6= X2).

2. In the two-state chain, find
Pr (X1 ≥ X2).

3. Let T0 denote the first time n > 0 that the the two-state chain is in state 0. Find

Pr (T0 = n
∣
∣X(0) = 0).

If the two-state chain starts in state 0, how long, on average, will it be before it first returns to
state zero?

4. Let T1 denote the first time n > 0 that the the two-state chain is in state 1. Find

Pr (T1 = n
)
.
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phase space

26. Markov Chains – Definitions and Examples

In this section we will introduce the basic definitions of Markov Chains and present several
important examples.

26.1. Definition.

A discrete stochastic process is a collection X(n), n = 0, 1, 2, . . . of random vari-
ables

X(n) : Ω → S
where (Ω, E,Pr ) is a probability space and

S = {x0, x1, x2, . . .}

is a finite or countably infinite collection of symbols or “states.” For convenience, we will
write Xn for X(n). We assume that the one-step transition probabilities

Pr (Xn+1 = xj
∣
∣Xn = xi)

are stationary, i.e., that they are independent of n:

Pr (Xn+1 = xj
∣
∣Xn = xi) = Pr (Xm+1 = sj

∣
∣Xm = xi).

for all choices of m and n. We will write pij for the transition probabilities:

pij ≡ P (xi, xj) ≡ Pr (Xn+1 = xj
∣
∣Xn = xi).

Generally speaking we will not need to explicitly reference Ω or E. In most examples
the state space S can be taken to be either a finite set of integers {0, 1, . . . ,N} or the
non-negative integers {0, 1, . . .}. The set of integers

{n : X(n) is defined}
is called the phase space. For now, both the state space and the phase space are discrete;
eventually we will consider processes in which either the phase space or both the phase
space and the state space are continuous.
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In order to provide additional structure, some additional assumptions are usually re-
quired. The most important of these is the Markov Property.

26.2. Definition.

A stochastic process {Xn} has the Markov Property if

Pr
(

Xn = xn

∣
∣
∣Xn−1 = xn−1,Xn−2 = xn−2, . . . ,X0 = x0

)

= · · ·

· · · = Pr
(

Xn = xn

∣
∣
∣Xn−1 = xn−1

)

.

In particular, if the Markov Property holds, then the one-step transition probability from time
n− 1 to time n depends only on the state of the system at the immediately preceding time
n− 1 and not on the entire prior history. A discrete process having the Markov Property is
said to be a Markov Chain.

26.3. Definition.

The initial distribtution for a Markov Chain is

π0(xk) = Pr (X0 = xk).

The distribution of Xn is commonly denoted by

πn(xk) = Pr (Xn = xk).

The joint distribution of {X0, X1, . . . ,Xn} can be readily described in terms of the
initial distribution and the transition probabilities.
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26.4. Proposition.

For any Markov Chain

Pr (X0 = x0,X1 = x1, . . . , Xn = xn) =

= π(x0)P ((x0, x1)P (x1, x2) · · ·P (xn−1, xn).

Proof. For example,

Pr (X0 = x0,X1 = x1) = Pr (X0 = x0) Pr (X1 = x1

∣
∣Pr (X0 = xx0)

= π0(x0)p0,1

(= π0(x0)P (x0, x1))

Proceding by induction, we now assume that

Pr (X − 0 = x0,X1 = x1, . . . ,Xn = xn) =

= π(x0)P (x0, x1)P (x1, x2) · · ·P (xn−1, xn)

and verify
Pr (X0 = x0,X1 = x1, . . . ,Xn+1 = xn+1) =

= π(x0)P (x0, x1)P (x1, x2) · · ·P (xn+1, xn+1)

Applying the definition of conditional probability,

Pr
(

X0 = x0,X1 = x1, . . . ,Xn+1 = xn+1

)

=

= Pr
(

X0 = x0, X1 = x1, . . . ,Xn = xn

)

· · ·

· · · Pr
(

Xn+1 = xn+1

∣
∣X(0) = x0,X(1) = x1, . . . , X(n) = xn

)

= π(x0)P (x0, x1)P (x1, x2) · · ·P (xn−1, xn) · · ·
· · · Pr

(

Xn+1 = xn+1

∣
∣X(n) = xn)

= π(x0)P (x0, x1)P (x1, x2) · · ·P (xn, xn+1)

applying, in order, the definition of condtional probability, the inductive hypothesis, the
Markov Property, and stationary transition probabilities.
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Next we informally define the n-step transition probabilities. We will give a more rigor-
ous defnition in the next section.

26.5. Definition.

The n-step transition probabilities are

P n(xi, xj) = Pr (Xn = xj
∣
∣X0 = xi).

Intuitively this follows from stationary transition probablities,

P n(xi, xj) = Pr (Xn = xj
∣
∣X0 = xi)

= Pr (Xm+n = xj
∣
∣Xm = xi)

for any choice of m, a fact we shall deduce in the next section.

26.6. Proposition. Chapman-Kolmogorov Equation.

Let {Xn} be a Markov chain having transition function P . Then

π1(xk) =
∑

i

π0(xi)P (xi, xk).

Proof. Note that

π1(xk) = Pr (X1 = xk)

=
∑

i

Pr (X1 = xk, X0 = xi)

=
∑

i

Pr (X0 = xi)Pr (X1 = xk
∣
∣X0 = xi)

=
∑

i

π0(xi)P (xi, xj).
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26.7. Definition.

A distribution π is stationary if

π(k) =
∑

i

π(i)pi,k

for all k.

Notice that if X0 has a stationary distribution π, then the Chapman-Kolmogorov equa-
tion implies that X1 has the same distrubtuion. An easy induction then implies that all
random variables Xn must have π as their distribution. It is also an easy exercise to verify
that if a stationary distriubtion exists it must be unique.

26.8. Example. Ehrenfest Chain.

Suppose that we have two urns and 2R balls, numbered {1, 2, . . . , 2R}. Initially some
of the balls are in one urn and some are in the other. Select a number at random from
{1, 2, . . . , 2R} and move the ball with that number from the urn it is in to the other urn.
Let Xn denote the number of balls in the first urn after n repetitions of this process. We
will find the transition probabilities pi,j and the stationary distribution for this chain.

Solution. Notice that the state space is

S = {0, 1, . . . , 2R}.

Now if X(n) is zero, then all the balls are in the other urn, so there is a probability of one
that X(n + 1) = 1. Similarly if X(n) = 2R, then all of the balls are in urn one, and so
there is a probability of one thatX(n+ 1) = 2R− 1. One theother hand, if 0 < i < 2R,
then

pi,j =

{
(2R− i)/2R if j = i+ 1
i/2R if j = i− 1
0 otherwise
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Notice that pi,j defines a (2R+ 1) × (2R+ 1) matrix

P =












0 1 0 0 · · · 0 0 0 0
1/2R 0 1 − 1/2R 0 · · · 0 0 0 0

0 2/2R 0 1 − 2/2R · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1− 2/2R 0 2/2R 0
0 0 0 0 · · · 0 1 − 1/R 0 1/2R
0 0 0 0 · · · 0 0 1 0












A stationary distribution will correspond to a row vector π that satisfies

πP = π

and
∑
π(i) = 1. We leave it to the exercises to verify that

π(k) =
(2R)!(0.5)2R

k!(2R− k)!

is the stationary distribution.

P. and T. Ehrenfest introduced this chain as an example of a stochastic (probabilistic)
approach to the physical notion of equilibrium. Instead of using balls and urns, they used
fleas jumping between two dogs. Despite the apparent contrived nature of the example,
the Ehrenfest chain can be useful in many applications such as heat transfer. It can also
be regarded asa discrete approximation of an important continuous-time, continuous state
process known as the Ornstein-Uhlenbeck process.

The assumption that he Ehrenfest chain starts with 2R balls is historical rather than
implicit in the model and some textbooks will refer to the Ehrenfest chain with d balls instead
of 2R balls.

26.9. Definition.

A state xi ∈ S is said to be absorbing if pi,i = 1 or, equivalently, if pi,j = 0 whenever
i 6= j. In particular, if ever Xn = si then the chain never leaves the state si, i.e., Xm = si
for all m ≥ n.
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26.10. Example. Gambler’s Ruin Chain.

Suppose that a gambler starts out with a fixed number of dollars and makes a series of one
dollar bets. Assume that

p = Pr (gambler wins $1)

and so
1 − p = Pr (gambler loses $1).

Let Xn be the number of dollars the gambler has after n bets. If the gambler ever runs out
of dollars – i.e., if ever Xn = 0 – then then no further bets are possible so Xm = 0 for
m > n. In particular, 0 is an absorbing state. Otherwise, for i > 0

pi,j =

{
1 − p if j = i− 1
p if j = i+ 1
0 otherwise

(26.1)

This is called the Gambler’s ruin chain on the state space S = {0, 1, 2, · · ·}. The
gambler might seek to limit losses by deciding to cease playing if his or her total dollars ever
reach $d. In this latter case d is also an absorbing state and (26.1) holds for 0 < i < d.

We will eventually show that if p ≤ 0.5 then the gambler eventually goes bankrupt
(Xn = 0 for some n) with probability one, hence the name of the chain.

Both the Ehrenfest Chain and the Gambler’s Ruin chain are special cases of the more
general birth and death chain.
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26.11. Example. Birth and Death Chain.

Suppose that S = {0, 1, 2, · · ·} or that S = {0, 1, 2, · · · , d}. Supose that if Xn = i
then Xn+1 can assume only the values i − 1, i or i + 1 and that the probability of the
transitions are given by

pi,j =







qi if j = i− 1,
ri if j = i,
pi if j = i+ 1, and
0 elsewhere

where pi ≥ 0, ri ≥ 0, qi ≥ 0 and pi + ri + qi = 1. It is usually also assumed that 0 is
absorbing, i.e., that r0 = 1 and p0 = 0 = q0. If S = {0,1, 2, · · · , d} then d is assumed
to be absorbing as well. This latter case is sometimes called the birth and death chain with
absorbing boundaries.

The name of this chain comes from applications where Xn is the population of the nth

generation of living organisms. In this case, the transition from i to (i + 1) constitutes a
birth and the transition from i to (i− 1) constitutes a death.

In many settings we will study objects which can generate new objects. These objects
could be, for example, neutrons, bacteria, or the male lineage in a royal family. In each
case the number of objects in the (n+ 1)st generation depends on the number of objects
in the nth generation as well as the probability that any object (neutron, bacterium, king)
survives to the (n + 1)st generation and – possibly – generates new particles (neutrons,
bacteria, male heirs) in the (n+ 1)st generation. This gives rise to the next example.
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26.12. Example. Branching Chain.

Suppose that {ξn}∞
n=1 are independent, identically distributed, non-negative, integer-valued

random variables having a common density function f . We set

pi,j = Pr (ξ1 + · · · + ξi = j)

for all j and for i > 0 and set p0,0 = 1. If we assume an initial distribution π0 on
S = {0, 1, 2, · · ·} and define recursively

πn(j) = Pr (Xn = j) =
∑

i

pi,jπn−1(i)

then the reader can readily verify that Xn is a Markov Chain with stationary transition
probabilities. Indeed,

p1,j = f(j)

for j ≥ 0.

It is possible that, after some number of generations, the original particle and all of its
descendents will have died out. If this happens, the particle is said to have become extinct.
An interesting problem is computing the probability of extinction for a particular paricle, i.e.,
computing the probability that a branching chain that starts in state 1 will eventually be
absorbed to state zero.

26.13. Example. Renewal Chain.

Suppose that a process arises in the following manner: a item, such as a light bulb, is checked
periodically to see if it is working. If it has failed after check at time n it is replaced at time
n + 1. From the time it is first installed, it has it has probability pj of failing between the
jth and (j + 1)st period of its working life. Let Xn be the age, in periods, of the item in
use at time n. Note that Xn = 0 for an item that has been replaced at time n. Then

Pr (Xn = k
∣
∣Xn−1 = j) =

{
pj k = 0
1 − pj k = j + 1
0 otherwise
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Using this model, on average what would you expect to be the average lifetime of a
lightbulb in use? Are there any implications for replacement scheduling?

In the next example we suppose that customers (airplanes, phone calls) arrive at a
service queue (airport, switch). In any particular unit of time, exactly one customer will be
served. However, during that time some random number ξ of customers will have arrived.
The result is a simple model for many applications involving queues – and provides a
discrete approximation for more complex models.

26.14. Example. Queuing Chain.

Suppose that {ξn}∞
n=1 are independent, identically distributed, non-negative, integer-valued

random variables having a common density function f . We set

Xn+1 = Xn + ξn+1 − 1

. Then Xn is a Markov Chain with state space S = {0, 1, · · ·} and

pi,j =

{
f(j) if i = 0 ,
f(j − i + 1) if i ≥ 1
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26. Markov Chains – Definitions and Examples: Problems.

1. Show that if a stationary distribution exists it must be unique.

2. Verify that

π(k) =
(2R)!(0.5)2R

k!(2R − k)!

defines the stationary distribution for the Ehrenfest Chain.

3. Suppose that we have a queue with a fixed service time per customer – for convenience, think
of this as a taxi stand in which taxis arrive one per minute and serve exactly one customer at a
time. If there is a customer waiting, exactly one customer is served with probability one in that
interval; if there are no customers waiting in the queue, the taxi departs and there’s another minute
lapse before the next taxi arrives. Meantime, customers are arriving at the queue according to the
Poison distribution, i.e, the probability that k new customers arrive in any service interval is

Pr (exactly k new arrivals) =
λk

k!
e−λ

for k = 0, 1, . . .. We suppose that the number of new customers arriving in the nth interval is
independent of the number arriving in the mth interval, for m 6= n. Let {Xn} be the number of
customers waiting in the queue at the start of the nth interval. Show that {Xn} is a Markov Chain
and find the transition function.

4. In the renewal chain, suppose that

pi = p(1 − p)i i = 0, 1, 2, · · ·
This distribuiton is not unreasonable when modelling electrical components. Suppose that the
model is revised so that the bulb is automatically replaced, whether it has failed or not, if its age
ever reaches 2p

1−p
intervals. What are the transition probabilities in this case?

5. Let {Xn} be a Markov chain whose state space S is a subset of the non-negative integers and
whose transition function satisfies the idenity

∑

y

yP (x, y) = Ax + B

for all x ∈ S and for some constants A and B.
(a) Show that E(Xn+1 = AE(Xn) + B.
(b) Show that, if A 6= 1, then

E(Xn) =
B

1− A
+ An

(

E(X0) − B

1 − A

)

.
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6. Let Xn be the Ehrenfest Chain on {0, 1, · · · , d} and show that the assumption of the previous

exercise holds. Use this to calculate Ex(Xn) ≡ E(Xn

∣
∣X0 = x).

26. Markov Chains – Definitions and Examples: Problems. 241



27. Calculations with Transition Functions

Because of the assumptions regarding transition functions outlined at the start of the pre-
vious section, there is a one-to-one correspondence between a Markov chain Xn and its
transition function P (x, y). Thus for every chain there is a unique transition function and
for every transition function there is a unique Markov chain. For this reason the study of
Markov chains involves deducing properties of the transition function.

We begin by collecting some basic formulae.

27.1. Proposition.

Let {Xn} be a Markov chain on a state space S having transition function P . Then

Pr (Xn+1 = xn+1, · · · , Xn+m = xn+m
∣
∣X0 = x0, · · · ,Xn = xn) =

= P (xn, xn+1) · · ·P (xn+m−1, xn+m).

Proof. First write the left-hand-side of the conclusion as

Pr (X0 = x0, · · · ,Xn+m = xn+m)

Pr (X0 = x0, · · · ,Xn = xn)
.

By Proposition 26.4, this reduces to

π0(x0)P (x0, x1) · · ·P (xn+m−1, xn+m)

π0(x0)P (x0, x1) · · ·P (xn−1, xn)

which proves the result upon canceling terms.

The following proposition is useful in working deducing properties of the transition
function.
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27.2. Proposition.

Let (Ω,M,Pr ) be a probability space and let the events in the conclusions listed below all
be in M. Then
(a) If {Di} are all disjoint and if, for each i, Pr (C

∣
∣Di) = p then Pr (C

∣
∣ ∪i Di) = p.

(b) If {Ci} are all disjoint then

Pr (∪iCi
∣
∣D) =

∑

i

Pr (Ci
∣
∣D).

(c) If {Ei} are all disjoint and ∪iEi = Ω then

Pr (C
∣
∣D) =

∑

i

Pr (Ei
∣
∣D) Pr (C

∣
∣Ei ∩D).

(d) If {Ci} are all disjoint and if Pr (A
∣
∣Ci) = Pr (B

∣
∣Ci) for all i, then

Pr (A
∣
∣ ∪i Ci) = Pr (B

∣
∣ ∪i Ci).

Proof. We will prove only (a) and leave the remaining similar proofs to the exercises.
Observe that

Pr (C
∣
∣ ∪i Di) =

Pr (C ∩ (∪iDi))

Pr (∪iDi)

=
Pr (∪i(C ∩Di))

Pr (∪iDi)

=

∑

iPr (C ∩Di)
∑

iPr (Di)

=

∑
Pr (C

∣
∣Di)Pr (Di)

∑

iPr (Di)

= p
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27.3. Proposition.

For subsets {A0, A1, . . . , An−1} of the state space S,

Pr (Xn+1 = y1, . . . ,Xn+m = ym
∣
∣X0 ∈ A0, . . . Xn−1 ∈ An−1,Xn = x)

= P (x, y1)P (y1, y2) · · ·P (ym−1, ym)

Proof. This follows at once from 27.1 and 27.2(a).

27.4. Proposition.

For subsets {A0, A1, . . . , An−1} and {B1, . . . , Bm} of the state space S,

Pr (Xn+1 ∈ B1, . . . ,Xn+m ∈ Bm

∣
∣X0 ∈ A0, . . .Xn−1 ∈ An−1,Xn = x)

=
∑

y1∈B1

· · ·
∑

ym∈Bm

P (x, y1)P (y1, y2) · · ·P (ym−1, ym)

Proof. This follows from 27.3 and 27.2(b).

Recall in the previous section we defined the m-step transition function to be

Pr (Xn+m = y
∣
∣Xn = x) = Pm(x, y)

which, because of stationary transition probabilities becomes

Pr (Xm = y
∣
∣X0 = x) = Pm(x, y).

The previous proposition lets us rephrase this in an alternative fashion.
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27.5. Proposition.

For subsets {A0, A1, . . . , An−1} of the state space S,

P (Xn+m = y
∣
∣X0 ∈ A0, . . . ,Xn−1 ∈ An−1,Xn = x) =

=
∑

y1

· · ·
∑

ym−1

P (x, y1)P (y1, y2) · · ·P (ym−2, ym−1)P (ym−1, y).

Proof. This follows upon taking B1, . . . , Bm−1 to be S and Bm = {y} in 27.4.

In particular, then we can deduce the following

27.6. Proposition.

The m-step transition function Pm(x, y) is given by

Pm(x, y) =
∑

y1

· · ·
∑

ym−1

P (x, y1)P (y1, y2) · · ·P (ym−2, ym−1)P (ym−1, y)

for m ≥ 2, by P 1(x, y) = P (x, y) for m = 1 and by

P 0(x, y) =
{

1 if x = y
0 otherwise

Proof. This follows upon setting A0, A1, . . . , An−1 to be S in the previous proposition.
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27.7. Proposition.

Let {Xn} be a Markov process. Then

P n+m(x, y) =
∑

z

P n(x, z)Pm(z, y).

Proof. First note that from the above

Pr (Xn+m = y
∣
∣X0 = x,Xn = z) = Pm(z, y).

Now, by 27.2(c)

P n+m(x, y) = Pr (Xn+m = y
∣
∣X0 = x)

=
∑

z

Pr (Xn = z
∣
∣X0 = x) Pr (Xn+m = y

∣
∣X0 = x,Xn = z)

=
∑

z

P n(x, z)Pm(z, y)

As a consequence of the above observations, if a Markov chain has a finite state space
then we can think of P n as the nth power of the transition matrix.

27.8. Example.

Suppose that {Xn} is the gambler’s ruin chain on S = {0,1, 2, 3}. Find the transition
matrix P for Xn.

Solution. In general the transition matrix on a finite state space S = {0, 1, · · · , d} has
the form

P =






0 · · · d

0 P (0,0) · · · P (0, d)
...

...
d P (d, 0) · · · P (d, d)





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In the case n = 3 and the gambler’s ruin chain this becomes

P =







0 1 2 3

0 1 0 0 0
1 q 0 p 0
2 0 q 0 p
3 0 0 0 1






.

Because of 27.8,

P 2(x, y) =
∑

z

P (x, z)Pz, y)

which is exactly the definition of the product of the matrix P with itself or

P 2 =






1 0 0 0
q qp 0 p2

q2 0 qp p
0 0 0 1






We conclude this section with the notion of hitting times which will be important in
our analysis of Markov chains. First we prove another preliminary proposition.

27.9. Proposition.

Let A, B and C be events. If Pr (C ∩ A) 6= 0, then

Pr (A ∩ B
∣
∣C) = Pr (A

∣
∣C)Pr (B

∣
∣A ∩C).

Proof. Note that if Pr (C ∩ A) 6= 0 then Pr (C) 6= 0. Thus

Pr (A ∩ B
∣
∣C)Pr (C) = Pr (A ∩ B ∩ C)

= Pr (B
∣
∣C ∩A) Pr (C ∩A)

= Pr (B
∣
∣C ∩A) Pr (A

∣
∣C) Pr (C).

Dividing by Pr (C) 6= 0 gives the result.
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27.10. Definition.

Let A ⊆ S be a set of states, and consider the event that the chain eventually assumes one
of the values in the set A, i.e.

{Xn ∈ A for some value of n > 0}

We will be interested in calculating the probability of this happening, subject to the condition
that the event {X0 = x} has occurred. In this case, we will write

Pr (Xn ∈ A for some value of n > 0|X0 = x) ≡ Px(A) ≡ Pr (A|X0 = x).

Thus the conclusion of the proposition can be re-written as

Px(A ∩B) = Px(A)Px(B
∣
∣A). (27.1)

27.11. Definition.

Let A be any subset of the state space S. The hitting time TA of A is

TA = min{n > 0 : Xn ∈ A}

In particular, TA is the first time n ≥ 1 thatXn ∈ A. Note that it is possible thatXn is
never in A, in which case TA = ∞. In many cases A will be a singleton set {x} in which
case we will write

Tx ≡ T{x}.
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27.12. Proposition.

For any n ≥ 1 and any states x and y in the state space S

P n(x, y) =

n∑

m=1

Px(Ty = m)P n−m(y, y).

Proof. For fixed n and for 1 ≤ m ≤ n the events

{Ty = m and Xn = y}

are disjoint. Thus

{Xn = y} =
n⋃

m=1

{Ty = m and Xn = y}.

From this

P n(x, y) = Px(Xn = y)

=

n∑

m=1

Px(Ty = m and Xn = y)

=

n∑

m=1

Px(Ty = m)Pr (Xn = y
∣
∣X0 = x and Ty = m)

=

n∑

m=1

Px(Ty = m)Pr (Xn = y
∣
∣X0 = x, X1 6= y, · · · , Xm−1 6= y, Xm = y)

=

n∑

m=1

Px(Ty = m)P n−m(y, y)

In words, the proposition is saying that in order to go from x to y in n steps, we must
be in state y for the first time at some step m where 1 ≤ m ≤ n, and then transition
from y back to y in the remaining n−m steps. Summing the probabilities of these disjoint
events gives the result.
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27.13. Example.

If a is an absorbing state, then

P n(x, a) = Px(Ta ≤ n)

for all n ≥ 1.

Proof. If a is absorbing, then P n−m(a, a) = 1 for all 1 ≤ m ≤ n so

P n(x, a) =

n∑

m=1

Px(Ta = m)P n−m(a, a)

=

n∑

m=1

Px(Ta = m)

= Px(Ta ≤ n).
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27. Calculations with Transition Functions: Problems.

1. The assumption in the previous section that the state space for the Ehrenfest chain consists
of S = {0, 1, . . . , 2R} is historical rather than a requirement of the model. What is the transition
matrix for an Ehrenfest chain in which the assumption is that one starts with d balls and the the
state space is S = {0, 1, . . . , d}?

2. Suppose that the Ehrenfest Chain is described as in the previous exercise with d = 3 and hence
for S = {0, 1, 2, 3}.
(a) Find Px(T0 = n) for x ∈ S and 1 ≤ n ≤ 3.
(b) Find P , P 2 and P 3.
(b) Suppose that X0 has the uniform distribution

π0 =
(

1

4
,
1

4
,
1

4
,
1

4

)

.

Find π1, π2 and π3.

3. Prove 27.2(b).

4. Prove 27.2(c).

5. Prove 27.2(d).

6. Suppose that a Markov Process has state space S = {0, 1, 2} and transition matrix

P =

(
0 1 2

0 0 1 0
1 1 − p 0 p
2 0 1 0

)

(a) Find P 2.
(b) Show that P 4 = P 2.

(c) Find P n for all n.
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28. Transient and Recurrent States

28.1. Definition.

Let x, y ∈ S be states. Recalling that the hitting time for x is

Ty = min{n > 0 : Xn = y}

We set
ρxy = Px(Ty < ∞).

A state y is recurrent if ρyy = 1 and transient if ρyy < 1.

Thus ρxy is the probability that the chain can ever get to state y given that it starts
in state x. A state is recurrent if, given that the chain starts in state y, there is a 100%
chance that it returns to y and transient if there is a positive chance that it does not return
to y. Clearly an abosorbing state is recurrent, but not conversely.

Clearly the state space S can be divided into two disjoint sets: the transient states

ST = {x ∈ S : ρxx < 1}

and the recurrent states

SR = {x ∈ S : ρxx = 1}.

In this section we will show that if x ∈ ST then the chainXn visits x at most a finite number
of times with probability one, while if x ∈ SR then then the chain Xn starting in state x
returns to x an infinite number of times with probability one. Thus, in studying the long-term
behavior of the chain, only the recurrent states matter. In addition we will show that

SR =
⋃

Ci

where the sets Ci are disjoint and have the additional property that, once Xn ∈ Ci for
some i then Xn remains in Ci thereafter with probability one.
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Dirac delta function

unit impulse function

unit point mass

28.2. Definition.

Let y ∈ S be a state and define the indicator function 1y for the singleton set {y} to
be

1y(z) =
{

1 if z = y
0 otherwise

This function has various names and notations depending on the context. For example,
in physics it is sometimes called the Dirac delta function, in engineering the unit impulse

function, and in mathematics the characteristic function of the set {y} or the unit point

mass. For our purposes “indicator function”is as good a name as any.

28.3. Definition.

For a state y ∈ S we set

N(y) =

∞∑

n=1

1y(Xn)

so that
N(y) = # of times n ≥ 1 that Xn = y.

The following corollary is obvious from the definitions.

28.4. Corollary.

For any states x, y ∈ S

Px(N(y) ≥ 1) = Px(Ty < ∞) = ρxy.

28.5. Corollary.

For any states x, y ∈ S
Px(N(y) ≥ 2) = ρxyρyy.
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Proof. In order for N(y) ≥ 2 the chain must be able get from x to y, then return from y
back to y. Thus if we set

Am = {X0 = x, Ty = m}
and

Bm,n = {Xm = y and Ty = m + n}
then the event

X0 = x and N(y) ≥ 2

is exactly the event
∪∞
m=1 ∪∞

n=1

(
Am ∩ Bm,n

)
.

By the Markov Property, for each fixed n and m the sets Am and Bm,n satisfy

Pr (Am ∩Bm,n) = Pr (Am) Pr (Bm,n).

Further for each fixed m and n the setsAm ∩ Bm,n are disjoint. Thus

Px(N(y) ≥ 2) =

∞∑

n=1

∞∑

m=1

Pr (Am)Pr (Bm,n).

Finally, stationary transition probabilities imply

Pr (Bm,n) = Pr (X0 = y and Ty = n).

Thus

Px(N(y) ≥ 2) =

∞∑

n=1

∞∑

m=1

Pr (Am) Pr (Bm,n)

=
∞∑

n=1

∞∑

m=1

Px(Ty = m)Py(Ty = n)

=

∞∑

n=1

Py(Ty = n)
(

∞∑

m=1

Px(Ty = m)
)

=
(

∞∑

m=1

Px(Ty = m)
)(

∞∑

n=1

Py(Ty = n)
)

= ρxyρyy.

254 November 18, 2017



Taking x = y, a simple induction verifies

28.6. Corollary.

For any state y ∈ S and any m ≥ 2

Py(N(y) ≥ m) = ρmyy.

Another simple induction verifies

28.7. Corollary.

For any states x, y ∈ S and any m ≥ 2

Px(N(y) ≥ m) = ρxyρ
m−1
yy .

28.8. Corollary.

For any states x, y ∈ S

Px(N(y) = m) = ρxyρ
m−1
yy (1 − ρyy).

Proof. Note that

Px(N(y) = 0) = 1 − Px(N(y) ≥ 1) = 1 − ρxy

and hence

Py(N(y) = 0) = 1 − ρyy.

Using arguments similar to 28.5, the result follows.
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28.9. Definition.

For a state x ∈ S we define the conditional expectation Ex of an event E to be the
expected value of the conditional random variable

E
∣
∣
X0=x

.

For example,
Ex(1y(Xn)) = Px(Xn = y) = P n(x, y).

28.10. Corollary.

For any states x, y ∈ S
Ex(N(y)) =

∑

n

P n(x, y).

Proof. For any states x, y ∈ S

Ex(N(y)) = Ex

(
∑

n

1y(Xn)

)

=
∑

n

Ex (1y(Xn))

=
∑

n

P n(x, y).

28.11. Definition.

For any states x, y ∈ S set
G (x, y) = Ex(N(y)).
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Note that in view of the preceding corollary

G (x, y) =
∑

n

Pn(x, y).

28.12. Theorem.

(a) If y ∈ S is a transient state then for any state x ∈ S

Px(N(y) < ∞) = 1

and
G (x, y) =

ρxy

1 − ρyy

.

(b) If y ∈ S is a recurrent state then

Py(N(y) = ∞) = 1

and
G (y, y) = ∞.

Further for any state x ∈ S

Px(N(y) = ∞) = Px(Ty < ∞) = ρxy

In particular, if ρxy = 0 then G (x, y) = 0 while if ρxy > 0 then G (x, y) = ∞.

Proof. For part (a), if y is transient, then

0 ≤ ρyy < 1

and hence

Px
(
N(y) = ∞

)
= lim

m→∞
Px(N(y) ≥ m)

= lim
m→∞

ρxyρ
m−1
yy

= 0
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Further
G (x, y) = Ex(N(y))

=

∞∑

m=1

mPx
(
N(y) = m)

)

=

∞∑

m=1

mρxyρ
m−1
yy (1 − ρyy)

=
ρxy

1 − ρyy

using the formula
∞∑

m=1

mtm−1 =
1

(1 − t)2

for −1 < t < 1. This completes the proof of (a).
For part (b), we assume that y is recurrent so ρyy = 1 and hence

Px
(
N(y) = ∞

)
= lim

m→∞
Px(N(y) ≥ m)

= lim
m→∞

ρxyρ
m−1
yy

= ρxy.

In particular, taking x = y,
Py(N(y) = ∞) = 1.

Since the condtional random variable

N(y)
∣
∣
X0=y

assumes the value infinity with positive probability it follows that

G (y, y) = Ey(N(y)) = ∞.

Now if ρxy = 0 then for each m

Px(Ty = m) = 0

which in turn implies that
P n(x, y) = 0
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and hence that G (x, y) = 0.
On the other hand, if ρxy > 0, then

Px(N(y) = ∞) = ρxy > 0

which again implies that
G (x, y) = Ex(x, y) = ∞

completing the proof of (b).

28.13. Definition.

A Markov chain is said to be recurrent if every state is recurrent, and is said to be
transient if every state is transient.

28.14. Corollary.

If the state space S is finite then there must be at least one recurrent state.

Proof. Suppose for contradiction that every state is transient. Then G (x, y) < ∞ and

G (x, y) =
∑

n

Pn(x, y)

implies that
lim
n
P n(x, y) = 0.

From this,

0 =
∑

y∈S
lim
n
P n(x, y)

= lim
n

∑

y∈S
P n(x, y)

= lim
n
Px(y ∈ S)

= 1

a contradiction.

28. Transient and Recurrent States 259



28.15. Definition.

Let x, y ∈ S and suppose ρxy > 0. Then we say that x leads to y and we write

x → y.

The following corollary is immediate from the definitions and the foregoing.

28.16. Corollary.

Let x, y, z ∈ S. Then x → y if and only if

P n(x, y) > 0

for some n > 0. Further if x → y and y → z, then x → z.

28.17. Theorem.

Let x ∈ S be a recurrent state and suppose that x → y. Then y is recurrent and
ρxy = ρyx = 1.

Proof. Without loss of generality we may assume x 6= y. Since

0 < ρxy = Px(Ty < ∞)

it follows that there is an n for which

Px(Ty = n) > 0.

Let n0 be the least such n, i.e.,

n0 = min{n : Px(Ty = n) > 0}.

Thus P n0(x, y) > 0 and Pm(x, y) = 0 if 1 ≤ m < n0.
This means that we can find states

y1, y2, · · · , yn0−1
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each of which are different from both x and y for which

Px(X1 = y1,X2 = y2, · · · , Xn0−1 = yn0−1,Xn = y)

= P (x, y1)P (y1, y2) · · ·P (yn0−1, y)

> 0

Now suppose for contradiction that ρyx < 1. Then there is a positive probabilty

1 − ρyx

that a chain starting at y never assumes the value x. Thus a chain starting at x has positive
probability

P (x, y1)P (y1, y2) · · ·P (yn0−1, y)(1 − ρyx)

of never returning to x. However, this contradicts x being recurrent, hence ρyx = 1.
Since ρyx = 1, we can select n1 so that

P n1(y,x) > 0.

Then for any n

P n0+n+n1(y, y) = Py(Xn0+n+n1 = y)

≥ Py(Xn1 = x,Xn1+n = x,Xn1+n+n0 = y)

= P n1(y,x)P n(x, x)P n0(x, y).

This implies

G (y, y) ≥
∞∑

n=n1+1+n0

P n(y, y)

=

∞∑

n=1

P n1+n+n0(y, y)

≥ P n1(y,x)P n0(x, y)

∞∑

n=1

P n(x, x)

= ∞
since x is recurrent. Now if y were transient this would contradict 28.2(a), hence y must
be recurrent.

We have now concluded that y must be recurrent and that y → x. Applying the above
arguments with x and y inverted then implies that ρxy = 1.
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28.18. Definition.

A collection of states C ⊂ S is closed if, whenever x ∈ C and y 6∈ C then ρxy = 0.
Alternatively, C is closed if x ∈ C and x → y implies y ∈ C.

28.19. Definition.

A collection of states C ⊂ S is irreducible if, whenever x, y ∈ C then x → y.

28.20. Proposition.

Let C ⊂ S be a closed, irreducible collection of recurrent states. Then for all x, y ∈ C
(a) ρxy = 1;
(b) Px(N(y) = ∞) = 1; and
(c) G (x, y) = ∞.

28.21. Proposition.

Let C ⊂ S be a closed, irreducible and finte collection of states. Then every state in C is
recurrent.
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28.22. Example.

Suppose that a Markov Chain has transition matrix












0 1 2 3 4 5

0 1 0 0 0 0 0
1 1

4
1
2

1
4

0 0 0

2 0 1
5

2
5

1
5

0 1
5

3 0 0 0 1
6

1
3

1
2

4 0 0 0 1
2

0 1
2

5 0 0 0 1
4

0 3
4












Find the recurrent and transient states and decompose the recurrent states into closed, irre-
ducible sets.

Solution. We can analyze the chain by constructing a matrix with a “+”in the (x, y)
position if x → y and a zero otherwise. The resulting matrix is











0 1 2 3 4 5

0 + 0 0 0 0 0
1 + + + + + +
2 + + + + + +
3 0 0 0 + + +
4 0 0 0 + + +
5 0 0 0 + + +











From this, we see that {0} is absorbing and hence also closed and irreducible. The states
{1, 2} are exactly the transient states since they both lead to 0. Finally, {3, 4, 5} is another
closed, irreducible collection of recurrent states.

This illustrates the final theorem of this section.
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28.23. Theorem.

Suppose that the collection of recurrent states SR is non-empty. Then there is a collection
{Ci} of disjoint, closed, irreducible sets such that

SR = ∪iCi.

Proof. Let x ∈ SR and set

Cx = {y ∈ SR : x → y}.

Since x is recurrent, ρxx = 1 and so x ∈ Cx.
We first will show that Cx is irreducible and closed. Suppose that y ∈ Cx and that

y → z. Since y ∈ SR it follows that z ∈ SR. Also, x → y and y → z implies x → z,
hence z ∈ Cx. Thus Cx is closed.

To see that Cx is irreducible, suppose that y, z ∈ Cx. Since x is recurrent and x → y
it follows that y → x. Since z ∈ Cx, we know that x → z. Thus, y → x and x → z, from
which we may conclude that y → z. Thus Cx is irreducible.

Thus for each x ∈ SR we can find a closed, irreducible set Cx containing x. Since S
is countable, there are at most countably many such sets Cx.

To complete the proof, suppose that x, y ∈ SR and that Cx and Cy are two closed,
irreducible sets constructed as above. It will suffice to show that either Cx = Cy or Cx ∩
Cy = φ.

Suppose that Cx ∩ Cy 6= φ, so we can select u ∈ Cx ∩ Cy . If v is any element in
Cx then u → v since Cx is irreducible. Since Cy is closed and u ∈ Cy, it follows that
v ∈ Cy. Since v ∈ Cx was arbitrary, this shows that Cx ⊆ Cy. The reverse containment
is deduced in exactly the same manner.
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28. Transient and Recurrent States: Problems.

1. Show that ρxy > 0 if and only if P n(x, y) > 0 for some integer n.

2. Show that if x → y and y → z then x → z.

3. Consider the Markov Chain on










0 1 2 3 4 5

0 1
2

1
2 0 0 0 0

1 1
3

2
3

0 0 0 0
2 0 0 1

8
7
8

0 0
3 1

4
1
4 0 0 1

4
1
4

4 0 0 3
4

0 1
4

0
5 0 1

5
0 1

5
1
5

2
5










(a) Detetermine which states are transient and which are recurrent.

(b) Find ρ{0,1}(x) for x = 0, 1, · · · , 5.
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29. Absorption Probabilities

The last theorem in the previous section decomposes the state space into the transient
states and a collection of closed, irreducible sets of recurrent states

S = (∪iCi)
⋃

ST .

Since the transient states can only be visited finitely many times, if the state space itself
is finite then a chain starting in a transient state must eventually enter one of the closed
irreducible sets Ci. Since each Ci is closed, once in Ci the chain can never leave. Hence
such a chain starting in a transient state is eventually absorbed into one of the setsCi. The
current section examines various settings in which it is possible to calculate the probability
of such absorption.

29.1. Definition.

Let C ⊆ S be a closed, irreducible set of recurrent states. For x ∈ S we define the
absorption probability of C relative to x as

ρC(x) = Px(TC < ∞).

29.2. Theorem.

Suppose that C ⊆ S be a closed, irreducible set of recurrent states and that the collection
of transient states ST is finite. Then the system of equations

f(x) =
∑

y∈C
P (x, y) +

∑

y∈ST

P (x, y)f(y) (29.1)

has the unique solution
f(x) = ρC(x)

for x ∈ ST .
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29.3. Example.

Suppose that a Markov Chain {Xn} has transition matrix









0 1 2 3 4

0 1
2

0 0 1
2

0
1 0 1 0 0 0
2 0 0 1

2
0 1

2

3 0 1
4

1
4

1
4

1
4

4 0 0 3
5

0 2
5









(a) Find the transient, recurrent and absorbing states.
(b) For each transient state x ∈ ST find ρ1(x).

Solution. Clearly {1} is an absorbing state. To find the transient states, we proceed as
before an place a “+”in the (x, y) position if x → y and a 0 otherwise. The resulting matrix
is









0 1 2 3 4

0 + + + + +
1 0 + 0 0 0
2 0 0 + 0 +
3 0 + + + +
4 0 0 + 0 +









Thus ST = {0, 3} and
SC = {1} ∪ {2, 4} (29.2)

where (29.2) is the decomposition of SR into closed, irreducible, disjoint sets of recurrent
states guaranteed by Theorem 28.23.

Now by Theorem 29.2,

f(0) = P (0,1) + P (0,0)f(0) + P (0,3)f(3)

f(3) = P (3,1) + P (3,0)f(0) + P (3,3)f(3)

or equivalently

f(0) = 0 +
1

2
f(0) +

1

2
f(3)

f(3) =
1

4
+ 0 +

1

4
f(3).
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From this f(3) = 1/3 and ρ1(3) = 1/3. Similarly ρ1(0) = 1/3.
Note that we could apply the Theorem to calculate ρ{2,4}(x). However clearly

ρ{2,4}(x) + ρ1(x) = 1

for each transient state x ∈ ST since a transient state must be absorbed into one of the
two closed irreducible sets {2, 4} and {1}. Thus

ρ{2,4}(0) = ρ{2,4}(3) =
2

3
.

We now prove Theorem 29.2.

Proof. If (29.2) holds, then for each y ∈ ST

f(y) =
∑

z∈C
P (y,z) +

∑

z∈ST

P (y,z)f(z)

If one substitutes the above into (29.2), then

f(x) =
∑

y∈C
P (x, y) +

∑

y∈ST

P (x, y)f(y)

=
∑

y∈C
P (x, y) +

∑

y∈ST

P (x, y)




∑

z∈C
P (y,z) +

∑

z∈ST

P (y,z)f(z)





=
∑

y∈C
P (x, y) +

∑

y∈ST

∑

z∈C
P (x, y)P (y,z) +

∑

y∈ST

∑

z∈ST

P (x, y)P (y,z)f(z)

Now notice that
∑

y∈C
P (x, y) = Px(TC = 1)

while ∑

y∈ST

∑

z∈C
P (x, y)P (y,z) =

∑

z∈C

∑

y∈ST

P (x, y)P (y,z)

= Px(TC = 2)

.
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For the last inequality, note that one can go from a transient state x to a reccurent state
z ∈ C in exactly two steps only by first passing through a transient state. Thus

f(y) = Px(TC = 1) + Px(TC = 2) +
∑

z∈ST

∑

y∈ST

P (x, y)P (y,z)f(z)

= Px(TC ≤ 2) +
∑

z∈ST

∑

y∈ST

P (x, y)P (y,z)f(z)

= Px(TC ≤ 2) +
∑

z∈ST

P 2(x, z)f(z).

For the last equality, note that the only way one can get from a state x to a transient state z
is by passing through another transient state, for a recurrent state can only lead to another
recurrent state. Thus

∑

y∈ST

P (x, y)P (y,z)f(z) = P 2(x, z)f(z).

From this
f(x) = Px(TC ≤ 2) +

∑

y∈ST

P 2(x, y)f(y)

from which an easy induction yields

f(x) = Px(TC ≤ n) +
∑

y∈ST

P n(x, y)f(y).

Now, letting n → ∞,

f(x) = Px(TC < ∞) + lim
n→∞

∑

y∈ST

P n(x, y)f(y)

= Px(TC < ∞) +
∑

y∈ST

lim
n→∞

P n(x, y)f(y) (29.3.)

where the interchange of the limit and the sum is justified by the fact that ST is assumed to
be finite. Since y is transient, we know that

G (x, y) =

∞∑

i=1

Pn(x, y) < ∞

and hence that
lim
n→∞

P n(x, y) = 0.

The result now follows immediately from (29.3).
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martingalesWe next turn to the topic of martingales. Historically, the study of martingales arose
in connection with the study of fair gambling games. The idea was that a game would be
“fair” if the expected accumulated winnings of the gambler did not change from play to play.
Mathematically, a martingale is defined to be a stochastic process {Xn} in which

E(Xn+1

∣
∣X0 = x0, X1 = x1, · · · ,Xn = xn) = xn (29.4)

whereXn represents the accumulated winnings of the gambler after playing the nth game.
Clearly (29.4) is not sufficient to guarantee that {Xn} is a Markov Chain, nor does every
Markov Chain satisfy (29.4). There is, however, a simple condition which assures that a
Markov Chain is a martingale.

29.4. Proposition.

Let {Xn} be a Markov chain defined on a finite state space S = {0, 1, · · · d}. Then (29.4)
holds if

d∑

y=0

yP (x, y) = x (29.5)

for each x ∈ S.

Proof. This is immediate from the definition of expectation and the Markov Property.

29.5. Proposition.

Let {Xn} be a Markov chain for which (29.5) holds. Then the states 0 and d are absorbing
and the states {1, 2, · · · , d− 1} are transient.

Proof. Taking x = 0 we see that

d∑

y=0

yP (0, y) = 0

from which it follows that

P (0,1) = P (0, 2) = · · · = P (0, d) = 0

270 November 18, 2017



which in turn implies that P (0,0) = 1, hence 1 is absorbing.
To see that d is also absorbing,

d =

d∑

y=0

yP (d, y)

=

d∑

y=1

yP (d, y)

=

d−1
∑

y=1

yP (d, y) + dP (d, d)

=

d−1
∑

y=1

yP (d, y) + d

(

1 −
d−1
∑

y=0

P (d, y)

)

which implies

0 =

(
d−1
∑

y=1

(y − d)P (d, y)

)

− P (d, 0)

and hence that P (d, y) = 0 for d = 0, 1, · · · , d− 1.
We leave to the exercises the proof that the states {0, 1, · · · , d− 1} are transient.

29.6. Theorem.

Let {Xn} be a Markov chain for which (29.5) holds. Then for every transient state x ∈
{1, 2, · · · , d− 1}

ρx,d =
x

d
and ρx,0 = 1 − x

d
.
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Proof. Note that

Ex(Xn) =

d∑

y=0

yPx(Xn = y)

=

d∑

y=0

yP n(x, y)

=

d−1
∑

y=1

yP n(x, y) + dP n(x, d)

=

d−1
∑

y=1

yP n(x, y) + dPx(Td ≤ n).

Since the states y = 1, 2, · · · , d− 1 are transient,

lim
n→∞

P n(x, y) = 0

and hence

lim
n→∞

dPx(Td < n) = lim
n→∞

Ex(Xn) = dρxd.

On the other hand (see the exercises)

E(Xn) = E(Xn−1) = · · · = E(X0)

from which Ex(Xn) = x and the conclusions follow.

Next we turn to absorption probabilities for the Birth and Death Chain. We begin by
recalling the basic definitions. Recall that for a birth and death chain there are non-negative
numbers qx, rx and px with the properties that qx + rx + px = 1 and

P (x, y) =

{
qx if y = x− 1
rx if y = x
px if y = x+ 1

In addition q0 = 0 and, if S = {0, · · · , d} is finite, then pd = 0.
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29.7. Theorem.

Let {Xn} be a Birth and Death Chain and suppose that 0 < qx for x > 0 and that
0 < px for all x if S = {0, 1, · · ·} or, if S = {0, 1, · · · , d} is finite, then 0 < px for
x = 0, 1, · · · , d− 1. Define γy by γ0 = 1 and, for y > 0,

γy =
q1 · · · qy
p1 · · · py

.

Suppose that a, b and x are states with a < x < b. Then

Px(Ta < Tb) =

∑b−1
y=x γy

∑b−1
y=a γy

while

Px(Tb < Ta) =

∑x−1
y=a γy

∑b−1
y=a γy

.

Proof. Fix states a and b with a < b and, for a ≤ x ≤ b define

g(x) =

{
1 if x = a
Px(Ta < Tb) if a < x < b
0 if x = b

Note for a < y < b the chain can from state y in one step only to y − 1, y or y + 1. Thus

g(y) = qyg(y− 1) + ryg(y) + pyg(y+ 1).

Since ry = 1 − qy − py it follows that

g(y) = qyg(y− 1) + (1 − qy − py)g(y)+ pyg(y + 1)

= g(y) + qy(g(y− 1) − g(y)) + py(g(y+ 1) − g(y))

which implies

g(y + 1) − g(y) =
qy

py
(g(y) − g(y − 1)).
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Re-writing this gives

g(y + 1) − g(y) =
γy

γy−1

(g(y) − g(y − 1)).

An easy induction now gives

g(y + 1) − g(y) =
γa+1

γa
· · · γy

γy−1

(g(a+ 1) − g(a))

=
γy

γa
(g(a+ 1) − g(a)) (29.6.)

or

g(y) − g(y+ 1) =
γy

γa
(g(a) − g(a+ 1)).

Now sum from y = a to y = b− 1 and use the fact that g(a) = 1 and g(b) = 0 and that
the left-hand-side telescopes to obtain

1 = (g(a) − g(a+ 1))

b−1
∑

y=a

γy

γa
.

this implies
g(a) − g(a+ 1)

γa
=

1
∑b−1
y=a γy

.

Now substitute this into (29.6)

g(y) − g(y+ 1) =
γy

∑b−1
u=a γu

.

Finally summing the above from y = x to y = b− 1 gives

g(x) =

∑b−1
y=x γy

∑b−1
y=a γy

which is the desired formula for g(x) = Px(Ta < Tb). The formula for Px(Tb < Ta)
follows from calculating 1 − g(x).
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29.8. Example.

A gambler plays roulette with a sequence of $1 bets. The probability of winning $1 is 9/19
and the probability of losing $1 is 10/19. Suppose that the gamblers begins with $10 and
decides to quit as soon as his net winnings are $25 or he goes broke.
(a) Find the probability that when the gambler quits he has won $25.
(b) Find the expected winnings – or loss.

Solution. Let Xn be the accumulated capital after n bets, so X0 = 10. The gambler
will quit when either Xn = 0 or Xn = 35. This is then a birth and death chain on
S = {0, · · · , 35} with

px =
9

19

and

qx =
10

19

for 0 < x < 35, with 0 and 35 being absorbing states.
In the context of the preceding theorem with a = 0, x = 10 and b = 35 means that

we seek

P10(T35 < T0).

Note that

γy =

(
10

9

)y

for 0 ≤ y ≤ 34. From this

P10(T35 < T0) =

∑9
y=0

(
10
9

)y

∑34
y=0

(
10
9

)y

=
(10/9)10 − 1

(10/9)35 − 1

= 0.047

completing (a). For (b), the expected capital is

0 · (0.953) + 35 · (0.047) = 35 · (0.047).
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Since the gambler started with $10, the expected loss is

10 − 35 · (0.047) = 8.36.

For an irreducible chain either every state is recurrent or every state is transient. If an
irreducible chain has a finite number of elements in the state space, then it is necessarily
recurrent. In general it is difficult to ascertain whether or not an irreducible chain with an
infinite number of states is recurrent or transient; however the above lets us do so for birth
and death chains.

29.9. Theorem.

Suppose that {Xn} is an irreducible birth and death chain on S = {0, 1, · · ·}. Then {Xn}
is recurrent if and only if

∞∑

x=1

γx = ∞.

Proof. As a special case of the preceding theorem,

P1(T0 < Tn) = 1 − 1
∑n−1
y=0 γy

. (29.7)

Now a birth and death chain starting at x = 1 can move to the right at most one step at a
time, thus

1 ≤ T1 ≤ T2 ≤ · · · ≤ Tn.

From this, the events {T0 < Tn} constitute a non-decreasing sequence, from which

lim
n→∞

P1(T1 < Tn) = P1(T1 < Tm for some m > 0)

via Theorem 5.5. Further, it must be the case that Tm ≥ m, hence Tm → ∞ as m → ∞
and thus the event

{T1 < Tm for some m > 0}
occurs if and only if the event

{T0 < ∞}
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occurs. From this

lim
n→∞

P1(T1 < Tn) = P1(T0 < ∞).

Thus (29.7) implies

P1(T0 < ∞) = 1 − 1
∑∞
y=0 γy

. (29.8)

Now if {Xn} is recurrent, then P1(T0 < ∞) = 1 and hence

∞∑

y=0

γy = ∞.

For the converse,

P0(T0 < ∞) = P (0, 0) + P (0, 1)P1(T0 < ∞).

Now if
∑

y γy = ∞ then P1(T0 < ∞) = 1 and so

P0(T0 < ∞) = P (0,0) + P (0,1) = 1

so 0 is recurrent. Since we have assumed the chain is irreducible, this implies the chain is
recurrent.

29.10. Example.

Suppose that a birth and death chain on S = {0, 1, · · ·} has

px =
x+ 2

2(x+ 1)
and qx =

x

2(x+ 1)
.

Then the chain is transient.
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Solution. Since qx/px = x/(x+ 2), it follows that

γx =
q1 · · · qx
p1 · · · px

=
1 · 2 · · ·x

3 · 4 · · · (x+ 2)

=
2

(x+ 1)(x+ 2)

= 2

(
1

x+ 1
− 1

x+ 2

)

.

So
∑

x

γx =
∑

x

2

(
1

x+ 1
− 1

x+ 2

)

= 2

(
1

2
− 1

3
+

1

3
− 1

4
· · · + − · · ·

)

= 1

< ∞
and so the chain is transient
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29. Absorption Probabilities: Problems.

1. Suppose that {Xn} is a Markov chain on {0, 1, 2, 3, 4, 5} having transition matrix










0 1 2 3 4 5

0 0 1
2

0 0 0 1
2

1 1
4

0 1
4

1
2

0 0
2 0 1

6
2
3 0 1

6 0
3 0 0 0 1

2
1
2

0
4 0 0 0 1

5
4
5

0
5 0 0 0 0 0 1










(a) Decompose the state space S into

S = ST ∪ C1 ∪ C2

where ST consists of the transient states and C1 and C2 are closed, irreducible, disjoint col-
lections of recurrent states.

(b) Calculate ρ5(i) for i = 0, 1, 2, 3, 4, 5.

2. Consider a Markov Chain with state space S = {0, 1, 2, 3, 4, 5, 6} and transition matrix












0 1 2 3 4 5 6

0 1
2 0 1

8
1
4

1
8 0 0

1 0 0 1 0 0 0 0
2 0 0 0 1 0 0 0
3 0 1 0 0 0 0 0
4 0 0 0 0 1

2
0 1

2

5 0 0 0 0 1
2

1
2

0
6 0 0 0 0 0 1

2
1
2












(a) Determine which states are transient and which are recurrent.
(b) Find ρ0,y for y = 0, 1, · · · , 6.

3. Let {Xn} be a Markov chain whose state space is a subset of {0, 1, · · ·} and with a transition
function that satisfies ∑

y

yP (x, y) = αx + β

for all x ∈ S and for some constants α and β.
(a) Show that E(Xn+1) = αE(Xn) + β.
(b) If α 6= 1 then show that

E(Xn) =
β

1 + α
+ αn

(

E(X0) − β

1 − α

)

.
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4. Let {Xn} be the Ehrenfest chain. Use the previous exercise to calculate Ex(Xn).

5.

6. Consider the Gambler’s Ruin chain on S = {0, 1, · · · , d}. For 0 < x < d find

Px(T0 < Td).

Let {Xn} be a Markov chain on S = {0, · · · , d} satisfying (29.5). Suppose further that {Xn} has
no absorbing states other than 0 and d. Show that each of the states x = 1, 2, · · · , d − 1 leads to
zero and hence must be transient.

7. Consider a birth and death chain on the non-negative integers for which px > and qx > 0 for
x ≥ 1.
(a) If

∑

y
γy = ∞ then show that ρx0 = 1 for x ≥ 1.

(b) If
∑

y
γy < ∞ then show that

ρx0 =

∑∞

y=x
γy

∑∞

y=0
γy

.

8. Consider the gambler’s ruin chain on S = {0, 1, · · ·}.
(a) If q ≥ p then show that ρx0 = 1 for x ≥ 1.
(b) If q < p then show that ρx0 = (q/p)x for x ≥ 1.

9. Consider an irreducible birth and death chain on the non-negative integers and suppose that

px ≤ qx for x ≥ 1. Show that the chain is recurrent.

280 November 18, 2017



30. Extinction Probabilities

This section we discuss the branching chain introduced in section 26.12. Recall that in the
branching chain we have a collection {ξi} of independent, identically distributed random
variables with values contained in the non-negative integers and having common density
function f . The branching chain models the evolution of a population through distinct
generations, with the random variable ξi representing the number of offspring of the ith

member of the population surviving to the next generation. Thus the transition matrix is

P (x, y) = Pr (ξ1 + · · · + ξx = y)

for x, y > 0 and P (0, 0) = 1. If f(1) = 1 then the branching chain is degenerate and
every state is an absorbing state. Thus in the sequel we will assume that f(1) < 1.

If we start with a population of one, it is possible that eventually the population drops
to zero, i.e., all of the descendents of the initial member of the population have died off or
become extinct. Thus the absorption probabilities to zero have particular meaning in the
context of the branching chain. This motivates the next definition.

30.1. Definition.

Let {Xn} be a branching chain. The extinction probability ρ for the chain is defined
to be

ρ = P1(T0 < ∞).

30.2. Proposition.

Let {Xn} be a branching chain with extinction probability ρ. Then

ρx0 = Px(T0 < ∞) = ρx

.

Proof. This follows immediately from the independence of the random variables {ξi} and
the Markov Property.
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Our results in this section rely on the probability generating function Φ for a random
variable ξ having density function f . Recall that

Φ(t) = E(tξ) = f(0) +

∞∑

x=1

f(x)tx.

Our main result for this section is the following theorem.

30.3. Theorem.

Let {Xn} be a branching chain and let ξ be a random variable having the same distribution
as the {ξi}. Let µ = E(ξ) where we permit µ = ∞ and suppose that Pr (ξ = 1) < 1.
(a) If µ ≤ 1 then ρ = 1.
(b) If µ > 1 and if Φ(t) is the probability generating function for ξ, then the equation

Φ(t) = t

has a unique root in [0, 1) and ρ is equal to this unique root.

30.4. Example.

Suppose that the male of a certain species always has exactly three offspring, each of which
has exactly equal chances of being male or female. Let {Xn} be the number of males in
the nth generation and suppose that {Xn} is a branching chain. Find the probability that a
male line becomes extinct.

Solution. The density function for the number of male offspring is binomial with n = 3
and p = 1/2 so

f(0) = 1/8, f(1) = 3/8, f(2) = 3/8, f(3) = 1/8.

Note that µ = 3/2, so ρ is the unique solution to the equation

Φ(t) = t

in [0, 1). This equation becomes

1

8
+

3

8
t+

3

8
t2 +

1

8
t3 = t
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or equivalently
t3 + 3t2 − 5t+ 1 = 0.

This factors to
(t− 1)(t2 + 4t− 1) = 0

and hence the roots are t = 1, t = −
√

5 − 2 and t =
√

5 − 2. Thus ρ =
√

5 − 2.

In order to prove our main result about branching chains, we deduce a slightly more
general result about probability generating functions.

30.5. Theorem.

Let ξ be random variable having values in the non-negative integers and having density
function f . Let µ = E(ξ) where we permit µ = ∞. If µ ≤ 1 and Pr (ξ = 1) < 1 then
the equation

Φ(t) = t (30.1)

has no solutions in [0, 1). If µ > 1 then (30.1) has a unique solution ρ in [0, 1).

Proof. Recall that
Φ(t) = f(0) + f(1)t+ f(2)t2 + · · ·

from which
Φ′(t) = f(1) + 2f(2)t+ 3f(3)t2 + · · ·

from which
Φ(0) = f(0), Φ(1) = 1, Φ′(1) = µ.

We first establish that the equation
Φ(t) = t

has no solutions in [0, 1) when µ ≤ 1. We begin by showing that

Φ′(t) < 1 for 0 ≤ t < 1. (30.2)

We can distinguish two cases.
Case 1. µ < 1.

In this case
lim
t↑ 1

Φ′(t) = Φ′(1) = µ < 1.
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Now for 0 ≤ t < 1, Φ′′(t) ≥ 0 and so Φ′(t) is non-decreasing in t. Thus Φ′(t) < 1,
establishing (30.2) in case 1.
Case 2. µ = 1.

In this case, there is some n ≥ 2 with f(n) > 0. If this were not the case, then

µ = 1f(1) = Pr (ξ = 1) < 1,

a contradiction. This implies that Φ′(t) > 0 for 0 < t, and thus Φ(t) is strictly increasing
on [0, 1). But since

lim
t↑ 1

Φ′(t) = µ = 1

and hence Φ′(t) < 1 for 0 ≤ t < 1 in case two as well.
Now via (30.2),

d

dt
(Φ(t) − t) < 0

for 0 ≤ t < 1, and hence Φ(t) − t is strictly decreasing on [0, 1). Since Φ(1) − 1 = 0, it
follows that Φ(t) − t > 0 on [0, 1) and hence has no roots.

Now suppose that µ > 1; we will show that Φ(t) − t has exactly one root in [0, 1).
For existence, note that

lim
t↑ 1

Φ′(t) = µ > 1.

This implies that there is some t0 with 0 < t0 < 1 and Φ′(t) > 1 for t0 ≤ t < 1. The
Mean Value Theorem then implies that

1 − Φ(t0)

1 − t0
=

Φ(1) − Φ(t0)

1 − t0
> 1

which in turn implies that
Φ(t0) − t0 < 0.

Now Φ(t) is continuous and Φ(0) ≥ 0, so there is some t1 with 0 ≤ t1 ≤ t0 and

Φ(t1) − t1 = 0

via the intermediate value theorem. This establishes the existence of a solution in [0, 1).
For uniqueness, suppose that there are two such roots, t1 and t̃1, i.e.,

Φ(t1) − t1 = Φ(t̃1) − t̃1 = Φ(1) − 1 = 0.

Thus, from Rolle’s Theorem, Φ′ has at least two roots in [0, 1), which in turn implies that
Φ′′ has a root in [0, 1). However, since µ > 1 there is necessarily an n > 1 for which
f(n) > 0. This in turn implies that if 0 < t < 1 then

Φ′′(t) = 2f(2) + 3!f(3)t+ · · · > 0

if 0 < t < 1. Thus Φ′′ cannot have a root in (0, 1) and so there cannot be two solutions.
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Proof of Theorem 30.3 We begin by verifying that the extinction probability ρ must solve
the equation

Φ(ρ) = ρ.

To see this,
ρ = ρ10

= P (1,0) +

∞∑

y=1

P (1, y)ρy,0

= f(0) +

∞∑

y=1

f(y)ρy

= Φ(ρ)

If µ ≤ 1 then Φ(t) = t has no solution in [0, 1), from which ρ = 1.
On the other hand, if µ > 1, then Φ(t) = t has a root t1 in [0, 1). Of course we also

know that Φ(1) = 1. Thus the proof will be complete if we can verify that the extinction
probability ρ is t1 as opposed to 1.

Since the particles act independently,

Px(T0 ≤ n) = (P1(T0 ≤ n))
x
.

so, for n ≥ 0,

P1(T0 ≤ n+ 1) = P (1,0) +
∞∑

y=1

P (1, y)Py(T0 ≤ n)

= P (1,0) +

∞∑

y=1

P (1, y) (P1(T0 ≤ n))
y

= f(0) +

∞∑

y=1

f(y)(P1(T0 ≤ n))
y

= Φ (P1(T0 ≤ n))

i.e.

P1(T0 ≤ n+ 1) = Φ(P1(T0 ≤ n)) .

We next assert that

P1(T0 ≤ n) ≤ t1
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for all n. Note that P1(T0 ≤ 0) = 0 ≤ t1. Proceeding by induction, if follows that

P1(T0 ≤ n + 1) = Φ(P1(T0 ≤ n)

≤ t1

via the inductive assumption. Thus for all n

P1(T0 ≤ n) ≤ t1

Now letting n → ∞,
ρ = P1(T0 < ∞)

= lim
n→∞

P1(T0 ≤ n)

=≤ t1

Since ρ must be either t1 or 1, this implies that ρ = t1.

Theorem 30.5 turns out to also enable us to determine whether or not the queuing
chain is recurrent or transient. While the conclusions are strikingly different from those for
the branching chain, the techniques are quite similar.

Recall that in a queuing chain, ξn represents the number of customers arriving in the
nth time interval, where {ξi} are independent and identically distributed random variables
having common density function f . In any time interval, if the queue is non-empty then
exactly one customer will be served. Thus the transition function is

P (x, y) =

{
f(y) if x = 0
f(y− x+ 1) if x ≥ 1

Now if the average number of newly arrived customers in each time interval is greater than
one, then it makes sense that the queue never empties and, in fact, that Xn → ∞ as
n → ∞. On the other hand, if on average fewer than one customer arrives per unit, then it
makes sense that the queue eventually empties since one customer is always served if the
queue is non-empty. This would imply that state 0 is recurrent, so if the chain is irreducible
then the chain is recurrent. The following theorem formalizes these intuitive ideas, and also
handles the less intuitive case when the average number of new customers is exactly one.

30.6. Theorem.

Let {Xn} be an irreducible queuing chain and let ξ be a random variable having the same
distribution as the {ξi}. Let µ = E(ξ). If µ > 1 then the chain is transient, while if µ ≤ 1
then the chain is recurrent.
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Proof. First note that

P (0, y) = P (1, y)

and that

ρ00 = ρ10.

We set ρ = ρ00 = ρ10. We begin by showing that

Φ(ρ) = ρ. (30.3)

If 0 is recurrent, then ρ = 1 and (30.3) follows from Φ(1) = 1. Thus without loss we may
assume that 0 is not recurrent.

We will first establish that

ρx0 = ρx. (30.4)

Suppose that the queuing chain starts at y > 0. Then the event

{Ty−1 = n}

occurs if and only if

n = min{m > 0 : y + (ξ1 − 1) + · · · + (ξm − 1)
︸ ︷︷ ︸

m time periods

= y − 1}

= min{m > 0 : ξ1 + · · · + ξm = m − 1}

which implies that

Py(Ty−1 = n)

is independent of y. Thus

ρy,y−1 = ρy−1,y−2 = · · · = ρ1,0 = ρ.

Now since the number in the queue can be reduced by at most one at each time interval, it
follows that in order to go from y to 0 customers in the queue we must pass through y− 1,
y−2, one step at a time, all the way to 0. Thus via independence and the Markov Property

ρy0 = ρy,y−1ρy−1,y−2 · · · ρ1,0 = ρy

establishing (30.4).
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Thus

ρ00 = P (0,0) +

∞∑

x=1

P (0, x)ρx,0

= f(0) +

∞∑

x=1

f(x)ρx,0

= f(0) +

∞∑

x=1

f(x)ρx

which implies that

Φ(ρ) = ρ.

Now suppose that the chain is irreducible and µ ≤ 1. Since the chain is irreducible,
it must be the case that f(1) < 1. Thus the equation Φ(t) = t has no solutions in [0, 1)
and hence ρ = 1. From the definition of ρ, this implies that 0 is recurrent. Since the chain
is assumed to be irreducible, this implies the chain is recurrent.

On the other hand, suppose that µ > 1. Since we know that the equation Φ(t) = t
has exactly one solution t1 in [0, 1) in this case (recall that in the case µ > 1 we did not
hypothesize that f(1) < 1). We will show that ρ = t1.

Similar to the proof for the branching chain,

P1(T0 ≤ n + 1) = P (1, 0) +

∞∑

y=1

P (1, y)Py(Ty ≤ n)

= f(0) +

∞∑

y=1

f(y)Py(Ty ≤ n)

We next argue that

Py(T0 ≤ n) ≤ (P1(T0 ≤ n))
y
. (30.5)

Using the same reasoning as we did to deduce that ρ0x = ρx, it follows that

Py(T0 ≤ n) ≤ Py(Ty−1 ≤ n)Py−1(Ty−2 ≤ n) · · ·P1(T0 ≤ n).

Since

Pz(Tz−1 ≤ n) = P1(T0 ≤ n)

it follows that

Py(T0 ≤ n) ≤ (P1(T0 ≤ n))
y
.
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From this

P1(T0 ≤ n+ 1) ≤ f(0) +

∞∑

y=1

f(y) (P1(T0 ≤ n))
y

which establishes (30.5).
Using an argument identical to the one for the branching chain, it now follows that

P1(T0 ≤ n) ≤ t1.

Letting n → ∞ gives
P1(T0 < ∞) ≤ t1.

Thus if µ > 1 it must be the case that ρ = t1 and so 0 is transient. Since the chain is
irreducible, all states must be transient.

If µ > 1 and if the chain is not irreducible, it is still possible to deduce that the chain is
transient; see the exercises.
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30. Extinction Probabilities: Problems.

1. Consider a branching chain with f(0) = f(3) = 1/2. Find the probability ρ of extinction.

2. Consider a branching chain with
f(x) = p(1 − p)x

for x ≥ 0, where 0 < p < 1. Show that ρ = 1 if p ≥ 1/2 and that

ρ =
p

1 − p

if p < 1/2.

3. Let {Xn} be the queuing chain.
(a) If either f(0) = 0 or if f(0) + f(1) = 1, show that the chain is not irreducible.
(b) If f(0) > 0 and f(0) + f(1) < 1, then show that the chain is irreducible.

4. Let {Xn} be the queuing chain which is not irreducible. Determine which states are absorbing,
recurrent and transient by considering the following four cases.
(a) f(1) = 1;
(b) f(0) > 0, f(1) > 0, and f(0) + f(1) = 1;
(c) f(0) = 1;
(d) f(0) = 0 and f(1) = 1.

5. Let {Xn} be a queuing chain that is not irreducible and suppose that µ > 1. Show that (d) of

the previous exercise applies and hence that the chain is transient.
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31. Stationary Distributions: Definitions and Examples

When we examined the 2-state chain we saw there was an important connection between
the asymptotic behavior of the chain

lim
n→∞

Xn

and the stationary distribution π that satisfied

πP = π

where π was written as a row-vector. In this section we begin to explore this relationship in
greater detail. We start by recalling the definition of a stationary distribution.

31.1. Definition.

Let {Xn} be a Markov Chain with transition function P . A distribtution π is a stationary

distribution provided that

∑

x

π(x)P (x, y) = π(y)

for all y.

31.2. Proposition.

If π is a stationary distribution, then

∑

x

π(x)P n(x, y) = π(y)

for all y.
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Proof. Note that

∑

x

π(x)P 2(x, y) =
∑

x

π(x)
∑

z

P (x, z)P (z, y)

=
∑

z

∑

x

π(x)P (x, z)P (z, y)

=
∑

z

(
∑

x

π(x)P (x, z)

)

P (z, y)

=
∑

z

π(z)P (z,y)

= π(y).

A simple induction verifies the conclusion.

The following corollary is immediate.

31.3. Corollary.

If X0 has a stationary distribution π, then

Pr (Xn = y) = π(y)

and in particular the distribution of Xn is independent of n. Conversely, if the distribution
of Xn is independent of n then X0 has a stationary distribution.

The next result gives conditions under which the asymptotic behavior of the chain can
be deduced from the behavior of the stationary distribution. This is analogous to the result
we deduced for the two-state chain.
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31.4. Proposition.

Supoose that π is a stationary distribution and that for each y

lim
n→∞

P n(x, y) = π(y). (31.1)

Then for all y
lim
n→∞

Pr (Xn = y) = π(y).

Proof. We know that

Pr (Xn = y) =
∑

x

π(x)P n(x, y)

so

lim
n→∞

Pr (Xn = y) = lim
n→∞

∑

x

π0(x)P
n(x, y)

=
∑

x

π0(x) lim
n→∞

P n(x, y)

=
∑

x

π0(x)π(y)

= π(y).

In the next section, we will devote some effort to deciding when (31.1) holds and hence
when the conclusions of the preceding proposition are valid.
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31.5. Example.

Suppose that a Markov Chain on {0, 1, 2} has transition matrix

P =






0 1 2

0 1
3

1
3

1
3

1 1
4

1
2

1
4

2 1
6

1
3

1
2






Find the (unique) stationary distribution.

Solution. The stationary distribution π must satisfy

π(0)

3
+
π(1)

4
+
π(2)

6
= π(0)

π(0)

3
+
π(1)

2
+
π(2)

3
= π(1)

π(0)

3
+
π(1)

4
+
π(2)

2
= π(2)

and also

π(0) + π(1) + π(2) = 1.

This reduces to π(0) = 6/25, π(1) = 2/5 and π(2) = 9/25.
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31.6. Example.

Let {Xn} be the Ehrenfest chain on {0, 1, 2, 3}, so that the transition matrix is

P =







0 1 2 3

0 0 1 0 0
1 1

3
0 2

3
0

2 0 2
3

0 1
3

3 0 0 1 0







Find the (unique) stationary distribution π.

Solution. We obtain
1

3
π(1) = π(0)

π(0) +
2

3
π(2) = π(1)

2

3
π(1) + π(3) = π(2)

1

3
π(2) = π((3)

and also

π(0) + π(1) + π(2) + π(3) = 1.

This reduces to

π(0) =
1

8
, π(1) =

3

8
, π(2) =

3

8
andπ(3) =

1

8
.

Note that in the preceding example P n(x, x) = 0 for odd values of n and hence it is not
possible for

lim
n
P n(x, y) = π(y)

for all y. This shows that the elementary conclusions we were able to obtain for the two-
state chain will need some refinement.

31. Stationary Distributions: Definitions and Examples 295



31.7. Example. Birth and Death Chains.

In this example we deduce necessary and sufficient conditions for an irreducible birth and
death chain to have a stationary distribution.

Solution. Let {Xn} be a birth and death chain. We will permit the state space to be
either finite

S = {0, 1, · · · , d}

or infinite

S = {0, 1, 2, · · ·}.

In the case that the state space is finite, the assumption that the chain is irreducible
reduces to

px > 0 (0 ≤ x < d)

qx > 0 (0 < x ≤ d)

while in the case the state space is infinite this assumption becomes

px > 0 (0 ≤ x < ∞)

qx > 0 (0 < x < ∞).

Now a necessary condition for π to be a stationary distribution is

∑

x

π(x)P (x, y) = π(y)

for all y ∈ S. For y = 0 this becomes

π(0)r0 + π(1)q1 = π(0)

while for y > 0 we obtain

π(y − 1)py−1 + π(y)ry + π(y + 1)qy+1 = π(y).

Since py + ry + qy = 1, the case y = 0 is equivalent to

−p0π(0) + π(1)q1 = 0
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and the case y > 0 is equivalent to

qy+1π(y + 1) − pyπ(y) = qyπ(y) − py−1π(y − 1).

Applying this relationship repeatedly we obtain

qy+1π(y + 1) − pyπ(y) = qyπ(y) − py−1π(y − 1)

= qy−1π(y − 1) − py−2π(y − 2)

...

= π(1)q1 − p0π(0)

= 0.

In particular then
qy+1π(y + 1) − pyπ(y) = 0

or

π(y + 1) =
py

qy+1

π(y).

Applying this formula recursively,

π(x) =
p0 · · · px−1

q1 · · · qx
π(0).

Now if we define

πx =

{
1 x = 0
p0 ···px−1

q1···qx
x ≥ 1

Then a necessary condition for π(x) to be a stationary distribution is that

π(x) = πxπ(0).

Another necessary condition is that

∑

x

π(x) = 1.

Since a stationary distribution must satsify

π(x) = πxπ(0)
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it follows that

1 =
∑

x

πxπ(0)

or (π(0))−1 =
∑

x πx. In particular, in order for a stationary distribution to exist, we must
also have

∑

x

πx < ∞.

Thus in order for a stationary distribution to exist we must have

∑

x

πx < ∞

in which case the stationary distribution must be given by

π(x) =
πx

∑

y πy
(31.2).

It is a routine matter to show that π(x) defined by (31.2) is in fact a stationary distribution
(see the exercises).

Our next example proposes one possible model for the number of calls active in tele-
phone switch. Many of the assumptions in the model, such as that new calls arrive accord-
ing a Poisson distribution, are supported by empirical data. We will return to refinements
of this model in laster sections.
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31.8. Example. Telephone Switch Model.

In this example, we will suppose that Xn represents the number of calls active in a phone
switch at time interval n. We will suppose that call is active at time n+ 1 in exactly one of
two ways:

1. The call was active at time n and not terminated during the time interval between n
and n + 1; or

2. The call was newly initiated at time n+ 1.
Thus

Xn+1 = R(Xn) + ξn

where

R(Xn) =

{
# of calls in progress at the start of interval n

that are still in progress at the start of interval n + 1

and
ξn = # of new calls initiated in interval n.

We further assume that the random variables {ξi} are independent Poisson variables
with parameter λ, and that the {ξi} are independent of R(Xn). Moreover, we suppose
that the duration of a paricular call is independent of when it was initiated (n) or how many
other calls are in the switch (the value of Xn) or how many new calls are iniitiated. We
also suppose that in any time period there is a fixed probability q that a call in progress will
terminate before the start of the next period. Equivalently, a call has probability p = 1 − q
of continuing into the next interval.

We will verify that this is a Markov Chain, find a stationary distribution for the chain
and determine the value of limnXn.

Solution. First note that

Pr (R(Xn) = z
∣
∣Xn = x) =

(
x

z

)

pz(1 − p)x−z

for 0 ≤ z ≤ x, i.e, R(Xn)
∣
∣Xn=x

is binomial. Further, by assumption

Pr (ξn = z) =
λze−λ

z!
.
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Since

Pr (Xn+1 = y
∣
∣Xn = x) =

min{x,y}
∑

z=0

Pr (R(Xn) = z, ξn+1 = y − z
∣
∣Xn = x)

=

min{x,y}
∑

z=0

Pr (ξn+1 = y − z) Pr (R(Xn) = z
∣
∣Xn = x)

=

min{x,y}
∑

z=0

λy−ze−λ

(y − z)!

(
x

z

)

pz(1 − p)x−z

= P (x, y)

Thus P (x, y) > 0 and hence the chain is irreducible. Coincidentally, this verifies that

Pr (Xn+1 = y
∣
∣Xn = x)

does not depend on n.
Next we establish the following

Claim. If Xn has a Poisson distribution with parameter t then R(Xn) has a Poisson
distribution with parameter pt.
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In order to establish the claim we compute:

Pr (R(Xn = y) =

∞∑

x=y

Pr (Xn = x, R(Xn) = y)

=

∞∑

x=y

Pr (Xn = x) Pr (R(Xn) = y
∣
∣Xn = x)

=

∞∑

x=y

txe−t

x!

(
x

y

)

py(1 − p)x−y

(applying the assumption that Xn is Poisson)

=

∞∑

x=y

txe−t

y!(x− y)!
py(1 − p)x−y

=
(pt)ye−t

y!

∞∑

x=y

tx−y

(x− y)!
(1 − p)x−y

=
(pt)ye−t

y!

∞∑

m=0

tm

m!
(1 − p)m

=
(pt)ye−tet(1−p)

y!

=
(pt)ye−tp

y!

verifying the claim.
We now can verify that a stationary distribution for this chain exists and has a Poisson

distribution with parameter t = λ/q = λ/(1 − p).
To see this, we start by supposing that X0 has a Poisson distribution with parameter

t. Then R(X0) has a Poisson distribtuion with parameter pt and so

X1 = ξ1 + R(X0)

is the sum of two Poisson random variables, one with parameter λ and the other with
parameter pt. Thus X1 has a Poisson distribution with parameter λ+ pt.

Applying this argument recursively, one can show (see the exercises) that if X0 has a
Poisson distribution with parameter t then Xn has a Poisson distribution with parameter

tpn +
λ

q
(1 − pn). (31.3)
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We will use this fact in the sequel.
From the above, X1 and X0 will have the same distribution if and only if

t = λ + pt

or equivalently

t =
λ

1 − p
=
λ

q
.

Finally, we examine the limiting behavior of Xn under the assumption that X0 has a
Poisson distribution.
Claim. If X0 has a Poisson distribution with parameter t then

lim
n→∞

P n(x, y) =
e−λ/q

(
λ
q

)y

y!

so in particular

lim
n→∞

Pr (Xn = y) =
e−λ/q

(
λ
q

)y

y!
.

To establish this, suppose that X0 has a Poisson distribution with parameter t. Then ap-
plying (31.3),

∞∑

x=0

e−ttx

x!
P n(x, y) = Pr (Xn = y)

=

[

tpn + λ
q
(1 − pn)

]y

y!
exp

(

−
[

tpn +
λ

q
(1 − pn)

])

=
e−λ/q(1−pn)

y!





y
∑

j=0

(
y

j

)

(tpn)
j

(
λ

q
(1 − pn)

)y−j








∞∑

j=0

(−tpn)j

(j)!





applying binomial expansion to the first factor and Taylor’s series to the second. From this
we have two expressions for Pr (Xn = y), one a power series

∞∑

x=0

e−ttx

x!
P n(x, y)
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and the other a product of two power series:

e−λ/q(1−pn)

y!





y
∑

j=0

(
y

j

)

(tpn)
j

(
λ

q
(1 − pn)

)y−j








∞∑

j=0

(−tpn)j

(j)!





This means we are in a position to apply the following fact about power series:
Claim. If

∑

x

cxt
x =

(
∑

x

axt
x

)(
∑

x

bxt
x

)

and the power series have positive radius of convergence, then

cx =

x∑

z=0

azbx−z.

In particular, if az = 0 for z > y then

cx =

min{x,y}
∑

z=0

azbx−z.

This claim is plausible since

∑

x

cxt
x =

(
∑

x

axt
x

)(
∑

x

bxt
x

)

=
∞∑

x=0

∞∑

y=0

bxayt
x+y

=

∞∑

x=0

∞∑

z=x

bxaz−zt
z

=
∞∑

z=0

z∑

x=0

bxaz−zt
z

=

∞∑

z=0

tz

(
z∑

x=0

bxaz−z

)

.

If the power series have positive radius of convergence, we can equate the terms and the
result follows.
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The second conclusion of the claim is applicable to Pr (Xn = y), from which we
obtain

P n(x, y)

x!
=
e−λ(1−pn)/q

y!

min{x,y}
∑

z=0

(
y

z

)

pnz
(
λ

q
(1 − pn)

)y−z (1 − pn)x−z

(x− z)!

This simplifies (slightly!) to

P n(x, y) = e−λ(1−pn)/q

min{x,y}
∑

z=0

(
x

z

)

pnz(1 − pn)x−z

[
λ
q
(1 − pn)

]y−z

(y − z)!

Now if we let n → ∞, then (1 − pn) → 1 and pnz → 0. Thus the only term in the sum
that does not vanish is the z = 0 term. This implies that

lim
n→∞

P n(x, y) =
e−λ/q

(
λ
q

)y

y!

as desired.
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31. Stationary Distributions: Definitions and Examples: Problems.

1. Consider a Markov Chain having the state space {0, 1, 2} and transition matrix

P =

(
0 1 2

0 0.4 0.4 0.2
1 0.3 0.4 0.3
2 0.2 0.4 0.4

)

.

Show that the chain has a unique stationary distribution π and find it.

2. Let {Xn} be a Markov Chain on the finite state space {0, 1, · · · , d} and having transition matrix
P = (aij). Let λ be an eigenvalue for P , i.e., a solution to the equation

det(P − λI) = 0.

Note that λ is an eigenvalue for P if and only if there is a non-zero vector v such that (P −λI)v = 0.
(a) Let P T = (aji) be the transpose of P . Show that P and P T have the same eigenvalues.
(b) Show that 1 is a eigenvalue for P .
(c) Show that if λ is an eigenvalue for P then |λ| ≤ 1.

3. Let {Xn} be the chain described in example 31.8. Show that if X0 has a Poisson distribtuion
with parameter t then Xn has a Poisson distribtuion with parameter

tpn +
λ

q
(1 − pn).

4. Let {Xn} be the chain described in example 31.8. Show that

Ex(Xn) = xpn +
λ

q
(1 − pn).
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32. Stationary Distributions: Results

As we have already noted, there are chains for which

lim
n
P n(x, y)

does not exist. For example, in the birth-and-death chain with rx = 0 for all x, then
P n(x, x) = 0 for odd values of n. However it turns out that

lim
n

1

n
P n(x, y)

has more regular behavior, and so we examine the above limit instead.
We begin by recalling some definitions.

32.1. Definition.

For numbers x and y we define the indicator funtion of {y} to be

1y(x) =
{

1 if x=y
0 otherwise

Note that

Ex(1y(Xn)) = Pr (Xn = y
∣
∣X0 = x) = P n(x, y).

32.2. Definition.

For a non-negative integer n and for y ∈ S we define

N n(y) =

n∑

m=1

1y(Xm)

so that N n(y) counts the number of visits to state y in the first n time intervals.
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32.3. Definition.

For a non-negative integer n and for x, y ∈ S we define

G n(x, y) =

n∑

m=1

Pm(x, y).

Clearly

Ex(N n(y)) = G n(x, y).

Also note that if y ∈ S is transient then

lim
n→∞

N n(y) = N(y) < ∞

with probability one and

lim
n→∞

G n(x, y) = G (x, y) < ∞.

Thus

lim
n→∞

N n(y)

n
= 0

with probability one and

lim
n→∞

G n(x, y)

n
= 0

with probability one.
From the definitions

N n(y)

n
= % of time the chain is in state y in 1st n states.

and
G n(x, y)

n

is the expected value of N n(y)/n.

32. Stationary Distributions: Results 307



32.4. Definition.

For y ∈ S we define

w y =
{
Ey(Ty) if Ey(Ty) < ∞
∞ otherwise

.

We further define the random variable 1{Ty<∞} to be

1{Ty<∞} =
{

1 if Ty < ∞
0 otherwise

Our first main result uses the Strong Law of Large Numbers.

32.5. Theorem. Strong Law of Large Numbers.

Let {ξi} be independent and identically distributed random variables having finite mean µ.
Then with probability one

lim
n→∞

ξ1 + · · · ξn
n

= µ.

If ξ ≥ 0 and µ = ∞ then the above limits still holds.

This is considerably stronger than the Weak Law proved earlier (and in fact implies the
Weak Law). An elementary, if somewhat technical proof, can be found in An Elementary

Proof of the Strong Law of Large Numbers, E. Etemadi, Zeitschrift fiir Wahrschein-

lichkeitstheorie und verwandte Gebiete, volume 51, number 1, pages 119-122,
Springer-Verlag 1981.
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32.6. Theorem.

Let y be a recurrent state. Then
(a)

lim
n→∞

N n(y)

n
=

1{Ty<∞}

w y

with probability one.
(b)

lim
n→∞

G n(x, y)

n
=
ρxy

w y

for all x ∈ S.

Proof. Let y be a recurrent state and, for r ≥ 1, set

T ry = min{n ≥ 1 : N n(y) = r}

so that
T ry = time of the rth visit to state y.

Next we define a sequence of random variables {ξry} by

ξ1y = T 1
y = Ty

and, for r ≥ 2,
ξry = T ry − T r−1

y

so that
ξri = waiting time between (r − 1)st and rth visit.

Clearly
r∑

k=1

ξky = T ry .

Now since {Xn} is a Markov Chain with stationary transition probabilities,
{ξ1y , · · · , ξry} are independent and identically distributed random variables having common
mean

Ey(ξ
1
y) = Ey(Ty) = w y .
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The Strong Law of Large Numbers then implies that

lim
k→∞

ξ1y + · · · ξky
k

= w y

with probability one. This in turn implies that

lim
k→∞

T ky

k
= w y

with probability one.
Next observe that

TN n(y)
y

︷ ︸︸ ︷

N n(y)
th visit occurs before n

≤ n ≤
TN n(y)+1
y

︷ ︸︸ ︷

(N n(y) + 1)st visit occurs after n
.

This implies that

TN n(y)
y

N n(y)
≤ n

N n(y)
≤
TN n(y)+1
y

N n(y)

with probability one. Now since N n(y) → ∞ as n → ∞, this implies that

w y ≤ lim
n→∞

n

N n(y)
≤ w y

with probability one. Equivalently, with probability one,

lim
n→∞

N n(y)

n
=

1{Ty<∞}
w y

.

Taking expectations completes the proof.
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32.7. Corollary.

Let C ⊆ S be a closed, irreducible collection of recurrent states. Then

lim
n→∞

G n(x, y)

n
=

1

w y

for x, y ∈ C. If in addition Pr (Xn ∈ C) = 1 then

lim
n→∞

N n(y)

n
=

1

w y

with probability one.

32.8. Definition.

A recurrent state y ∈ S is said to be null recurrent if w y = ∞.

Via 32.6, if y is null recurrent then

lim
n→∞

G n(x, y)

n
= lim

n→∞
1

n

n∑

m=1

P n(x, y) = 0

for all x ∈ S.

32.9. Definition.

A recurrent state y ∈ S is said to be positive recurrent if w y < ∞.

Applying 32.6 again, we see that if y is positive recurrent then

lim
n→∞

G n(x, y)

n
=

1

w y

> 0.
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32.10. Theorem.

Let x ∈ S be positive recurrent and suppose that x leads to y. Then y is positive recurrent
and y leads to x.

Proof. Since x is recurrent and x leads to y, it follows that y is recurrent and y leads to
x. Thus there are integers n1 and n2 such that

P n1(y,x) > 0 and P n2(x, y) > 0.

Now for any integer m,

P n1+m+n2(y, y) ≥ P n1(y,x)Pm(x, x)P n2(x, y).

Thus, upon summing fromm = 1 to m = n we obtain

G n1+n+n2(y, y)

n
− G n1+n2(y, y)

n
=

1

n

n1+n+n2∑

m=1

Pm(y, y) − 1

n

n1+n2∑

m=1

Pm(y,y)

=
1

n

n1+n+n2∑

m=n1+n2+1

Pm(y,y)

≥ P n1(y,x)P n2(x, y)
1

n

n∑

m=1

Pm(x, x)

= P n1(y,x)pn2(x, y)
Gn(x, y)

n

Now as n → ∞, the left-hand-side of the above inequality goes to 1/w y while the right-
hand-side goes to

P n1(y,x)pn2(x, y)
1

w x

> 0.

Thus 0 < 1/w y and so w y < ∞, implying that y is positive recurrent.
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32.11. Corollary.

If C ⊆ S is a closed, irreducible collection of states, then either
(a) every state in C is transient; or
(b) every state in C is null recurrent; or
(c) every state in C is positive recurrent.

32.12. Corollary.

If C ⊆ S is finite and closed, then there is an x ∈ S such that x is positive recurrent.

Proof. Suppose for contradiction that every x ∈ S is either transient or null recurrent.
Since C is closed,

∑

y∈C
Pm(x, y) = 1

for all x ∈ C and for all integers m. Summing this from m = 1 to m = n and dividing by
n, we see that

1 =
1

n

∑

y∈C

n∑

m=1

Pm(x, y)

=
∑

y∈C

G n(x, y)

n
.

But we have assumed that C has only transient and null recurrent states, and so

lim
n→∞

G n(x, y)

n
= 0

for all x, y ∈ C. Since C is finite, we can interchange the summmation and the limit and
so obtain

1 = lim
n→∞

1

n

∑

y∈C

n∑

m=1

Pm(x, y)

=
∑

y∈C
lim
n→∞

G n(x, y)

n

= 0
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a contradiction. Thus C must have at least one positive recurrent state.

32.13. Theorem.

If C ⊆ S is closed, irreducible and finite, then every state in C is positive recurrent.

32.14. Corollary.

An irreducible Markov Chain having a finite state space is positive recurrent.

32.15. Corollary.

A Markov Chain having a finite number of states has no null recurrent states.

Proof. If y ∈ S is recurrent, then there is a closed, irreducible set C ⊆ S with y ∈ C.
But a closed, irreducible, finite set must have a postive recurrent state x. SinceC is closed
and irreducible, y must also be postive recurrent.

Our next results require the use of a special case of an advanced theorem in analysis.
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32.16. Theorem. Bounded Convergence Theorem for Sequences.

Let α(x), βn(x) and β(x) be sequences where x ranges over some set S ⊆ N. Suppose
that α(x) ≥ 0 for all x and that

∑

x

α(x) < ∞.

Suppose that |βn(x)| ≤ 1 for each x and each n and that, for each fixed x,

lim
n→∞

βn(x) = β(x).

Then
lim
n→∞

∑

x

α(x)βn(x) =
∑

x

α(x) lim
n→∞

βn(x)

=
∑

x

α(x)β(x).

Proof. Let ε > 0 be an arbitrarily small number. We can choose N so large that

∑

x≥N
α(x) <

ε

2
.

Then

∣
∣
∣

∑

x

βn(x)α(x) −
∑

x

β(x)α(x)
∣
∣
∣ ≤

∑

x

|βn(x) − β(x)|α(x)

=
∑

x<N

|βn(x) − β(x)|α(x) +
∑

x≥N
|βn(x) − β(x)|α(x)

≤
∑

x<N

|βn(x) − β(x)|α(x) +
∑

x≥N
(|βn(x)| + |β(x)|)α(x)

≤
∑

x<N

|βn(x) − β(x)|α(x) +
∑

x≥N
2α(x)

≤
∑

x<N

|βn(x) − β(x)|α(x) + ε
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or ∣
∣
∣

∑

x

βn(x)α(x) −
∑

x

β(x)α(x)
∣
∣
∣ ≤

∑

x<N

|βn(x) − β(x)|α(x) + ε.

Now since the sum on the right-hand-side is over only finitely many terms, we may in-
terchange the sum and the limit when we let n → ∞. The sum on the right-hand-side
vanishes as n → ∞, so we can conclude that

lim sup
n→∞

∣
∣
∣
∣
∣

∑

x

βn(x)α(x) −
∑

x

β(x)α(x)

∣
∣
∣
∣
∣
≤ ε.

Since ε > 0 was arbitrary, this proves the result.

32.17. Theorem.

Let {Xn} be a Markov Chain having stationary distribution π. If x ∈ S is a transient or
null recurrent state, then π(x) = 0.

Proof. If z is transient or null recurrent we have shown that

lim
n→∞

G n(z, y)

n
= 0

for all z ∈ S. Since π is a stationary distribution,

∑

z∈S
π(z)Pm(z,x) = π(x)

for all x ∈ S. Summing this from m = 1 to m = n and dividing by n gives

∑

z∈S
π(z)

Gn(z, x)

n
= π(x).

But since

0 ≤ G n(x, y)

n
=

1

n

n∑

m=1

Pm(x, y) ≤ 1
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the bounded convergence theorem implies

π(x) = lim
n→∞

∑

z∈S
π(z)

Gn(z, x)

n

=
∑

z∈S
π(z) lim

n→∞
G n(z, x)

n

= 0

32.18. Theorem.

Let {Xn} be an irreducible, closed Markov Chain. Then {Xn} has a unique stationary
distribution π given by

π(x) =
1

w x

.

Proof. We know that

lim
n→∞

G n(z, x)

n
=

1

w y

for all x, y ∈ S.
First suppose that π is a stationary distribution. As before,

∑

z

π(z)
Gn(z, x)

n
= π(x).

So, taking limits, and again applying the Bounded Convergence Theorem,

π(x) = lim
n→∞

∑

z

π(z)
Gn(z, x)

n

=
∑

z

π(z) lim
n→∞

G n(z, x)

n

=
1

w x

∑

z

π(z)

=
1

w x

.
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Thus if π is a stationary distribution, then it must satisfy π(x) = 1/w x.
For the converse set

π(x) =
1

w x

.

It will suffice to show that
(a)

∑

x
1

w x
= 1; and

(b)
∑

x

1

w x

P (x, y) =
1

w y

.

The Bounded Convergence Theorem no longer helps with this part of the proof. How-
ever, if S is finite, the result is fairly direct. First note that

∑

x∈S
Pm(z, x) = 1

and so
∑

x∈S

G n(z, y)

n
= 1.

If S is finite, we can let n → ∞ and interchange the limit and the sum to get

∑

x∈S

1

w x

= 1.

Similarly, since
∑

x∈S
Pm(z,x)P (x, y) = Pm+1(z, y)

it follows that
∑

x∈S

G n(z, x)

n
P (x, y) =

G n(z, y)

n
− P (z, y)

n
.

Once again, S is finite, we can let n → ∞ and interchange the limit and the sum to obtain

∑

x∈S

1

w x

P (x, y) =
1

w y

.

We can deduce the case when S is not finite by expanding on the above reasoning.
Suppose that S1 is a finite subset of S. Then

∑

x∈S1

Pm(z,x) ≤ 1
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and so
∑

x∈S1

G n(z, y)

n
≤ 1.

Since S1 is finite, we can let n → ∞ and conclude that

∑

x∈S1

1

w x

≤ 1.

Since this must be true for any finite subset S1 ⊆ S, it follows that

∑

x∈S

1

w x

≤ 1.

By exactly similar reasoning,

∑

x∈S

1

w x

P (x, y) ≤ 1

w y

.

Suppose next that there is some y for which the above inequality is strict. Then

∑

y∈S

1

w y

>
∑

y∈S

∑

x∈S

1

w x

P (x, y)

=
∑

x∈S

∑

y∈S

1

w x

P (x, y)

=
∑

x∈S

1

w x

which is a contradiction. Thus

∑

x∈S

1

w x

P (x, y) =
1

w y

.

Then if we set

λ =
1

∑

x
1

w x

and

π(x) =
λ

w x
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it follows that π(x) is a stationary distribution. But from the first part of the theorem we
must then have

π(x) =
1

w x

or λ = 1, from which
∑

x

1

w x

= 1

as desired.

There are several consequences of this important result.

32.19. Corollary.

An irreducible Markov Chain is positive recurrent if and only if it has a stationary distribution.

32.20. Example.

Let {Xn} be an irreducible birth and death chain on the non-negative integers. When is the
chain positive recurrent, null recurrent and transient?

Solution. We have previously seen that such a chain has a stationary distribution if and
only if

∞∑

x=1

p0 · · · px−1

q1 · · · qx
< ∞

which is therefore a necessary and sufficient condition for the chain to be positive recurrent.
Similarly, we previously showed that such a chain is transient if and only if

∞∑

x=1

q1 · · · qx
p1 · · · px

< ∞.

From this, such a chain is null recurrent if and only if both

∞∑

x=1

p0 · · · px−1

q1 · · · qx
= ∞
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and ∞∑

x=1

q1 · · · qx
p1 · · · px

= ∞.

32.21. Corollary.

Let {Xn} be an irreducible Markov chain having a finite state space. Then the chain has a
unique stationary distribtution.

32.22. Corollary.

Let {Xn} be an irreducible, positive recurrent Markov Chain having stationary distribution
π. Then with probability one

lim
n→∞

N n(x)

n
= π(x)

for all x ∈ S.

32.23. Theorem.

Let C ⊆ S be a closed, irreducible collection of positive recurrent states. Then there is a
unique stationary distribution π that vanishes outside of C and, for x ∈ C is given by

π(x) =
1

w x

.

Proof. SinceC is closed and irreducible, if {Xn} starts in C then it never leaves C. Thus
the embedded chain given by

Yn =
{
Xn if Xn ∈ C
0 otherwise

has exactly C for its state space. Further the transition function for {Yn} agrees with the
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transition function for {Xn} restricted toC, {Yn} is a closed, irreducible Markov Chain and
the theorem applies.

32.24. Corollary.

Let Sp be the collection of positive recurrent states for a Markov Chain.
(i) If Sp = ∅ then the chain does not have a stationary distribution.
(ii) If Sp 6= ∅ and is irreducible, then the chain has a unique stationary distribution.
(iii) If Sp 6= ∅ but is not irreducible, then the chain has an inifinte number of stationary

distributions.

Proof. For (iii), if Sp 6= ∅ but is not irreducible, we can find disjoint, closed, irreducible
sets C1 and C2. If π1 is a stationary distribution concentrated on C1 and π2 is a stationary
distribution concentrated on C2 and if 0 < λ < 1 then

λπ1 + (1 − λ)π2

is a stationary distribution.

32.25. Example.

Suppose that {Xn} is a Markov chain on S = {0, 1, 2, 3, 4, 5} having transition function

P =











0 1 2 3 4 5

0 1 0 0 0 0 0
1 1/4 1/2 1/4 0 0 0
2 0 1/5 2/5 1/5 0 1/5
3 0 0 0 1/6 1/3 1/2
4 0 0 0 1/2 0 1/2
5 0 0 0 1/4 0 3/4











If the chain starts in state 4, how long, on average, before it returns to state 4?
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Solution. It suffices to find w 4. Notice that

C1 = {0}

and
C3 = {3, 4, 5}

are closed, irreducible sets, while
C2 = {1, 2}

is the set of transient states. If we find a stationary distribution concentrated on C3, then
the relationship

π(x) =
1

w x

will answer the question.
A stationary distribution on C3 must satisfy

π(3) + π(4) + π(5) = 1

and
π(3)/6 +π(4)/2 +π(5)/4 = π(3)
π(3)/3 = π(4)
π(3)/2 +π(4)/2 +3π(5)/4 = π(5)

This implies that
π(3) = 1/4 π(4) = 1/12 π(5) = 2/3.

Thus a chain that starts in state four will, on average, return to state four in tweleve steps.
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32. Stationary Distributions: Results: Problems.

1. Suppose that {Xn} is a Markov chain on S = {0, 1, 2, 3, 4, 5} having transition function

P =










0 1 2 3 4 5

0 1/2 1/2 0 0 0 0
1 1/3 2/3 0 0 0 0
2 0 0 1/8 0 7/8 0
3 1/4 1/4 0 0 1/4 1/4
4 0 0 3/4 0 1/4 0
5 0 1/5 0 1/5 1/5 2/5










(a) Decompose the state space into transient states and irreduciable, close, recurrent states.
(b) For each closed, irreducible set of states C, find the stationary distribution concentrated on

C.
(c) Find ρC(5) for each of the closed, irreducible collections of states C.
(c) Find

lim
n→∞

G n(5,0)

n

324 November 18, 2017



33. Convergence to the Stationary Distribution

Thus far we have been able to deduce an “averaged”asymptotic relationship between the
transition probabilities and the stationary distribution:

lim
n→∞

1

n

n∑

m=1

P n(x, y) = lim
n→∞

G (x, y)

n
= π(y).

This section will examine the relationship between

lim
n→∞

P n(x, y)

and the stationary distribution π(y). This relationship is necessarily more complex as the
following two examples show.

33.1. Example.

Let {Xn} be the Ehrenfest chain on {0, 1, 2, 3}, so that the transition function is

P =







0 1 2 3

0 0 1 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 1 0







This chain has a stationary distribution given by

π(0) = 1/8 π(1) = 3/8 π(2) = 3/8 π(3) = 1/8.

However, it is impossible to get from a state x back to state x in an odd number of steps,
i.e.,

P n(x, x) = 0

if n is odd. Indeed, by finding the Jordan Form of P we can calculate P n directly as

Pn =





1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8









(−1)n 0 0 0
0 1 0 0
0 0 (1/3)n 0
0 0 0 (−1/3)n









1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8





−1
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where





1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8

−1/8 1/8 −3/8 3/8






−1

=






1 −3 3 −1
1 3 3 1
1 1 −1 −1
1 −1 −1 1




 .

Thus for n large and even

Pn ≈





1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8





−1

=





1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4





while for n large and odd

Pn ≈





1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8









−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8





−1

=





0 3/4 0 1/4
1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0





.

From this we can see that the chain exhibits a periodicity of period two asymptotically.

33.2. Example.

We can modify the Ehrenfest Chain as so that the periodicity of the preceeding example is
not present. In this modification, we first randomly select a ball, remove the ball from its
urn, then randomly choose which of the two urns in which to place the ball.

It is easy to verify (see the exercises) that the transition matrix is

P =







0 1 2 3

0 1/2 1/2 0 0
1 1/6 1/2 1/3 0
2 0 1/3 1/2 1/6
3 1/2 1/2 1/2 1/2






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The stationary distribution is the same as for the unmodified Ehrenfest chain:

π(0) = 1/8 π(1) = 3/8 π(2) = 3/8 π(3) = 1/8.

In this case, however,

Pn =





1/8 1/8 3/8 3/8
−1/8 1/8 −1/8 1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 3/8 −3/8









0 0 0 0
0 1 0 0
0 0 (1/3)n 0
0 0 0 (2/3)n









1/8 1/8 3/8 3/8
−1/8 1/8 −1/8 1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 3/8 −3/8





−1

from which one can show that

lim
n→∞

P n(x, y) = π(y)

for all x and y.

In order to understand the asymptotic behavior of P n(x, y) it is necessary to expand
on the intuitive notion of periodicity for chains.

33.3. Definition.

If J ⊆ N is a collection of positive integers, then an integer d is a divisor of J if n/d is
an integer whenever n ∈ J . The greatest common divisor of a set J is the number

gcd (J) = max{d ∈ N : d is a divisor of J}.

For example, if J = {4, 8, 12, 16, · · ·} then 1, 2 and 4 are all divisors of J , but
gcd (J) = 4.

33.4. Definition.

Let {Xn} be a Markov Chain having state space S and let x ∈ S. If P n(x, x) > 0 for
some n then we define the period of x to be

dx = gcd {n ∈ N : P n(x, x) > 0}.
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33.5. Proposition.

Let {Xn} be a Markov Chain having state space S and let x, y ∈ S with dx and dy defined
(i.e., P n1(x, x) > 0 and P n2(y, y) > 0 for some integers n1 and n2). If x leads to y
and y leads to x, then dx = dy .

Proof. We may choose n1 and n2 so that

P n1(x, y) > 0 and P n2(y,x) > 0.

But this implies that

P n1+n2(x, x) ≥ P n1(x, y)P n2(y,x) > 0

and so dx must divide n1 + n2, i.e.,

n1 + n2 = k1dx

for some integer k1.
Further, if P n(y, y) > 0 then

P n1+n+n2(x, x) ≥ P n1(x, y)P n(y, y)P n2(y,x) > 0

and so dx must be a divisor of n1 + n+ n2, i.e.,

n1 + n+ n2 = k2dx

for some integer k2. But this implies that

n = (k2 − k1)dx

or that dx divides n. Since dy is the largest divisor of such n, it follows that

dx ≤ dy.

An exactly symmetric argument shows that dy ≤ dx and hence that dx = dy .
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33.6. Corollary.

Let {Xn} be an irreducible Markov Chain. Then all states have the same period.

33.7. Definition.

Let {Xn} be an irreducible Markov Chain having period d. If d = 1 we say that the chain
{Xn} is aperiodic while of d > 1 we say that the chain {Xn} has period d.

We are now ready to state the main result of this section.

33.8. Theorem.

Let {Xn} be an irreducible, positive recurrent Markov Chain.
(a) If {Xn} is aperiodic, then

lim
n→∞

P n(x, y) = π(y)

for all x, y ∈ S.
(b) If {Xn} is periodic with period d, then for every pair x, y ∈ S there is a number r

with 0 ≤ r < d such that
P n(x, y) = 0

unless n = md+ r for some integer m ∈ N. Further,

lim
m→∞

Pmd+r(x, y) = dπ(y).

Conclusion (a) of the theorem corresponds to the situation in example 33.2, while
conclusion (b) corresponds to the situation in example 33.1 with d = 2. The proof of this
theorem is rather complex and starts with a simple Lemma from number theory. Indeed,
in example 33.1, the Theorem asserts directly without appeal to Jordan Forms that for n
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large and even

P n ≈






1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4






while for n large and odd

P n ≈






0 3/4 0 1/4
1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0






For example, suppose n is large and even. Since it’s not possible to transition from 0
to 1 in an even number of steps, P 2n(0, 1) = 0; similarly, P 2n(0, 3) = 0. Then applying
these two observations and the theorem, we obtain the first row of the first matrix above:

P 2n(0, 0) −→ 2π(0)

P 2n(0, 1) = 0

P 2n(0, 2) −→ 2π(2)

P 2n(0, 1) = 0

The other rows are similar.
Before proving the Theorem we will need an elementary result from number theory.

33.9. Lemma.

Let J ⊆ N be a collection of positive integers and suppose that
(a) gcd (J) = 1; and
(b) whenever m,n ∈ J it follows that n+m ∈ J .
Then there is a number N such n ∈ J for all n ≥ N .

Proof. We begin by showing that J contains two consecutive integers. To do this, suppose
the contrary. We can then choose a k ≥ 2 so that any two integers in J differ by at least
k. Moreover, we can take k to be the least such number and can find two specific integers,
n1 and n1 + k that differ by exactly k.

Since k ≥ 2 there must be an integer n ∈ J so that k is not a divisor of n. Thus we
can write

n = mk + r
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where 0 < r < k.
Now assumption (b) of the lemma implies that if j ∈ J then any multiple of j must also

be in J . Thus we may conclude that

(m+ 1)(n1 + k) ∈ J

and
n + (m+ 1)n1 ∈ J.

But this then implies that

(m+ 1)(n1 + k) − [n + (m+ 1)n1] = k +mk − n

= k − r

< k

which says that we have found two elements of J closer to each other than k. But we
selected k to be the least separation between elements of J , so this is a contradiction.

Thus we may conclude that J contains two consecutive integers, saym1 and m1 +1.
Set N = m2

1 and let n ≥ N . We can choose an integer m and a remainder r (0 ≤ r <
m1) so that

n−N = n−m2
1 = mm1 + r.

This implies that
n = r+mm1 +m2

1

= r(m1 + 1) + (m1 − r +m)m1

∈ J

using assumption (b) of the Lemma. Thus if n ≥ N then n ∈ J .

Proof of Theorem 33.8.

We begin with the aperiodic case. For arbitrary a ∈ S set

J = {n : P n(a, a) > 0}.

Since the chain is assumed to be aperiodic, gcd (J) = 1. Further, if m,n ∈ J then

P n+m(a, a) ≥ P n(a, a)Pm(a, a) > 0
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and so n+m ∈ J . By the Lemma, there is an intgerN so that if n ≥ N then n ∈ J , i.e.,

n ≥ N =⇒ P n(a, a) > 0.

Now let x, y ∈ S. Since the chain is irreducible, there are integers n1 and n2 so that
P n1(x, a) > 0 and P n2(a, y) > 0. Thus if n ≥ N

P n1+n+n2(x, y) ≥ P n1(x, a)P n(a, a)P n2(a, y) > 0.

Thus for any pair x, y ∈ S there is an n0 such that

n ≥ n0 =⇒ P n(x, y) > 0.

Now set S × S = {(x, y) : x, y ∈ S} and define a new chain {(Xn, Yn)} having
state space S × S and transition function

P2

(
(x, y), (u, v)

)
= P (x,u)P (y, v).

Clearly the chains {Xn} and {Yn} taken separately are Markov Chains having transition
function P the same as the original chain and the successive transitions of the chains are
independent of one another.

We next show that the new chain {(Xn, Yn)} is aperiodic, irreducible and positive
recurrent. If we select any pair of states

(
(x, y), (u, v)

)
∈ S × S we can find an n0 so

that
n > n0 =⇒ P n(x, u) > 0 and P n(y, v) > 0.

This implies that
P2

(
(x, y), (u, v)

)
= P n(x, u)P n(y,v) > 0

for all n ≥ n0, and thus the chain is irreducible and aperiodic.
In order to show the chain is positive recurrent it will suffice to show that the chain

has a stationary distribution. If π is the stationary distribution for the original chain, we can
define

π2

(
(x, y)

)
= π(x)π(y).

Then ∑

(x,y)∈S×S
π2

(
(x, y)

)
P2

(
(x, y), (u, v)

)

=
∑

x∈S

∑

y∈S
π(x)π(y)P (x,u)P (y, v)

= π(u)π(v)

= π2

(
(u, v)

)
.
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This shows that π2 is a stationary distribution and hence that {(Xn, Yn)} is positive recur-
rent.

Next set
T = min{n > 0 : Xn = Yn}.

For (a, a) ∈ S × S set

T(a,a) = min{n > 0 : (Xn, Yn) = (a, a)}.

Note that T(a,a) < ∞ with probability one. Since T ≤ T(a,a), it follows that T < ∞ with
probability one.

Next we observe that

Pr (Xn = y and T ≤ n} = Pr (Yn = y and T ≤ n}

for all y ∈ S. This is intuitively reasonable since the two chains are, with probability one,
the same for large n. We leave a precise argument to the exercises.

Now observe that for y ∈ S

Pr (Xn = y) = Pr (Xn = y, T ≤ n) + Pr (Xn = y, T > n)

= Pr (Yn = y, T ≤ n) + Pr (Xn = y, T > n)

≤ Pr (Yn = y) + Pr (T > n)

Similarly,
Pr (Yn = y) ≤ Pr (Xn = y) + Pr (T > n)

which implies
∣
∣Pr (Xn = y) − Pr (Yn = y)

∣
∣ ≤ Pr (T > n).

But since T is finite with probabilty one, it follows that

lim
n→∞

∣
∣Pr (Xn = y) − Pr (Yn = y)

∣
∣ = 0

with probability one.
Now let x ∈ S and let the initial distribution of {(Xn, Yn)} satisfy

Pr (X0 = x) = 1 and Pr (Y0 = y) = π(y)

for all y ∈ S. From this Pr (Xn = y) = P n(x, y) while Pr (Yn = y) = π(y). Thus

0 = lim
n→∞

∣
∣Pr (Xn = y) − Pr (Yn = y)

∣
∣

= lim
n→∞

∣
∣P n(x, y) − π(y)

∣
∣
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with probability one, which completes the proof of the aperiodic case.
Before proceeding with the periodic case, we note that we have incidentally proven the

following corollary.

33.10. Corollary.

Let {Xn} be a Markov chain with state space S and let C ⊆ S be a closed, irreducible
and positive recurrent set of states. Then there is a stationary distribution concentrated on
C and, for x, y ∈ C

lim
n→∞

P n(x, y) = π(y) =
1

w y

.

Proof of Theorem 33.8 completed.

Set Ym = Xmd form ∈ N, so {Ym} is a Markov Chain having transition functionQ = P d.
Further, if y ∈ S then

gcd {m > 0 : Qm(y,y) > 0} = gcd {m > 0 : Pmd(y,y) > 0}

=
1

d
gcd {m > 0 : P d(y, y) > 0}

= 1

so {Ym} is an aperiodic chain.
Now if w y is the expected return time to y for {Xn} and w̃ y is the expected return

time to y for {Yn} then

w̃ y =
w y

d

and

lim
n→∞

Qm(y, y) =
1

w̃ y

=
d

w y

= dπ(y).

This in turn implies that
lim
n→∞

Pmd(y, y) = dπ(y) (33.1)

for all y ∈ S.
Now let x, y ∈ S and set

r1 = min{n > 0 : P n(x, y) > 0}.
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We assert that
P n(x, y) > 0 ⇐⇒ n − r1 = kd ∃k ∈ N.

To see this, choose n1 so that P n1(y,x) > 0, which implies that

P n1+r1(y,y) ≥ P n1(y,x)P r1(x, y) > 0

so that
r1 + n1 = k1d ∃k1 ∈ N.

If P n(x, y) > 0 then the same argument shows that

n+ n1 = k2d ∃k2 ∈ N.

This implies that
n− r1 = n+ n1 − n1 − r1

= k2d− k1d

= (k2 − k1)d

so n − r1 is a multiple of d as desired.
Next we divide r1 by d to obtain an m1 and an r (0 ≤ r < d) so that

r1 = m1d+ r.

But then
P n(x, y) > 0 =⇒ n− r1 = kd

=⇒ n−md− r = kd

=⇒ n = (k+m)d+ r

From this we conclude that P n(x, y) > 0 only if n = md+ r for some m ∈ N.
Finally,

Pmd+r(x, y) =

m∑

k=0

Px(Ty = kd+ r)P (m−k)d(y, y).

If we set

γm(k) =

{

P (m−k)d(y, y) if 0 ≤ k ≤ m
0 otherwise

then for each fixed k equation (33.1) implies

lim
m→∞

γm(k) = dπ(y).
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Thus we can apply the Bounded Convergence Theorem to conclude that

lim
m→∞

Pmd+r(x, y) = dπ(y)

∞∑

k=0

Px(Ty = kd+ r)

= dπ(y)Px(Ty < ∞)

= dπ(y)

since Px(Ty < ∞) = 1.
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33. Convergence to the Stationary Distribution: Problems.

1. Verify the formula for P n is example 33.1 by showing that

P =





1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8









−1 0 0 0
0 1 0 0
0 0 1/3 0
0 0 0 −1/3









1/8 1/8 3/8 3/8
−1/8 1/8 1/8 −1/8
1/8 1/8 −1/8 −1/8
−1/8 1/8 −3/8 3/8





−1

2. With P as in example 33.2, verify that

P =






0 1 2 3

0 1/2 1/2 0 0
1 1/6 1/2 1/3 0
2 0 1/3 1/2 1/6
3 1/2 1/2 1/2 1/2






is the transition matrix, find the stationary distribution and conclude that

lim
n→∞

P n(x, y) = π(y)

for all x and y.

3. Let (Ω, E, Pr ) be a probability space and suppose that all the sets in this problem are in E.
(a) If {Dn} are disjoint and Pr (C

∣
∣Dn) = p independently of n, then

Pr (C
∣
∣
⋃

n

Dn) = p.

(b) If {Cn} are disjoint, then

Pr (
⋃

n

Cn

∣
∣D) =

∑

n

Pr (Cn

∣
∣D).

(c) If {En} are disjoint and ∪nEn = Ω, then

Pr (C
∣
∣D) =

∑

n

Pr (En

∣
∣D)Pr (C

∣
∣En ∩ D).

(d) If {Cn} are disjoint and Pr (A
∣
∣Cn) = Pr (B

∣
∣Cn) for all n, then

Pr (A
∣
∣
⋃

n

Cn) = Pr (B
∣
∣
⋃

n

Cn).
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4. Let {(Xn, Yn)} and T be as in the proof of 33.8.
(a) For 1 ≤ m ≤ n and for z ∈ S show that

Pr (Xn = y
∣
∣T = m, Xm = Ym = z) = Pr (Yn = y

∣
∣T = m, Xm = Ym = z).

(b) Show that

{T ≤ n} =
⋃

m

⋃

z

{T = m, Xm = Ym = z}.

(c) Conclude that
Pr (Xn = y and T ≤ n} = Pr (Yn = y and T ≤ n}.

5. Let {Xn} be a Markov Chain on {0, 1, 2} having transition matrix

P =

(
0 1 2

0 0 0 1
1 1 0 0
2 1/2 1/2 0

)

.

(a) Show that the chain is irreducible.
(b) Find the period.
(c) Find the stationary distribution.

6. Consider a Markov Chain on {0, 1, 2, 3, 4} having transition matrix

P =








0 1 2 3 4

0 0 1/3 2/3 0 0
1 0 0 0 1/4 3/4
2 0 0 0 1/4 3/4
3 1 0 0 0 0
4 1 0 0 0 0








.

(a) Show that the chain is irreducible.
(b) Find the period.
(c) Find the stationary distribution.
(d) Estimate P 7294(0, x) for x = 0, 1, 2, 3, 4.
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34. Poisson Processes

Thus far we have considered random processes {Xn} where n ∈ N. In particular the
evolution through time is measured in discrete increments n. In many situations it is far
more natural to allow time to vary continuously even while the state space remains discrete.
For example, counting the number of cars passing through an interchange has a discrete
state space N but the cars could arrive at any time t ∈ [0,∞). This is an example of
a particular kind of stochastic process. Intuitively, if X(t) is the number of cars that have
passed by time t, then one would expect thatX(t) would start out equalling zero, remain so
for a while, then ‘jump’ toX(t) = 1 when the first car passes at some time τ1. The process
then stays equal to one for a period until some time τ2 when the second car passes, and
so on. For these kinds of process there are actually then two random quantities: the value
of X(t) and the sequence of times 0 ≤ τ1 < τ2 < τ3 < · · · when the jumps occur.

While a chain Xn is defined for all n, it is possible that a jump process X(t) could
explode, i.e., that X(t) → ∞ while tn → t∞ < ∞. For example if the time between
arrivals is summable

τn+1 − τn = 2−n

then X(t) is only defined for 0 ≤ t < 2. Generally we will assume that the processes we
study will be non-explosive or defined for all t > 0.

Another slightly exotic behavior that a jump process X(t) could exhibit is to enter
some state x0 then instantly jump to another state instead of staying there for some period
of time. In most applications of interest jump processes instead ‘rest ’in a state x0 before
jumping to another state. More mathematically, the times of succeeding jumps are strictly
increasing:

τ1 < τ2 < τ3 < · · · .

Finally, it is of course possible that a jump process could enter a state x0 and never
leave it. We have encountered this type of state before: if this happens with probability one
then x0 is an absorbing state.

We will begin our more formal study of jump processes in the next section. In this
section we will study a particular kind of jump process, one that counts the number of events
that have occured. It turns out that many of the important properties of jump processes are
illuminated by this particular process, the Poisson Process. We begin with some simple
definitions.
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34.1. Definition. Counting Processes.

A collection of random variables {X(t)}t∈[0,∞) defined on a probability space (Ω, E,Pr )
is a counting process if
(i) X(0) = 0;
(ii) X(t) takes on only integer values;
(iii) Pr (X(s) ≤ X(t)) = 1 if s ≤ t.

34.2. Definition. Independent Increments.

The process {X(t)} is said to have independent increments if whenever s1 < t1 ≤
s2 < t2 ≤ · · · ≤ sn < tn then the random variables

X(t1) −X(s1),X(t2) −X(s2), · · · ,X(tn) −X(sn)

are independent, i.e., if the number of events that occur in disjoint intervals are independent.

34.3. Definition. Stationary Increments.

The process {X(t)} is said be time homogeneous (or have stationary increments)
if for all s, t ≥ 0

X(t+ s) −X(t) and X(s) −X(0)

have the same distributions, i.e., if the number of events that occur in the interval (t, t+ s]
depends only on the length of the interval s.

Intuitively, if {X(t)} is a counting process then X(t) counts the number of random events
that have occured up to time t. For example, X(t) might be counting the number of ve-
hicles passing a checkpoint on a road, or the total number of calls that have arrived at
a telephone exchange, or the number of emissions from a radioactive substance or the
number of bacteria in a culture.

In each of the examples in the previous paragraph it is reasonable to suppose that
there is an "average" arrival rate λ and so, on any fixed interval [t, t + h), one would
expect that the number of arrivals would be

X(t+ h) −X(t) = hλ

If one assumes that the arrivals occur independently and cannot happen simultaneously,
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the result is a Poisson Process.
The particular mathematical assumptions we will make on X(t) are the following.

34.4. Definition.

A counting process {X(t)} is said to be a Poisson Process if there is a λ > 0 such that
for any t ≥ 0 and any h > 0
(a)

lim
h→0

Pr
(

X(t+ h) −X(t) = 1
)

h
= λ;

(b)

lim
h→0

1 − Pr
(

X(t+ h) −X(t) = 0
)

h
= λ;

(c) For any k ≥ 2,

lim
h→0

Pr
(

X(t+ h) −X(t) = k
)

h
= 0.

Assumption (a) formalizes the notion of an average arrival time. Assumption (c) for-
malizes the notion that events cannot occur simultaneously.

Assumption (b) is a slight strengthening of (a) and (c) taken together. Notice first that
the complementary form of (b) is

lim
h→0

Pr
(

X(t+ h) −X(t) ≥ 1
)

h
= λ

Clearly

lim
h→0

Pr
(

X(t + h) − X(t) ≥ 1
)

h
= lim

h→0

∞∑

k=1

Pr
(

X(t + h) − X(t) = k
)

h

= lim
h→0

Pr
(

X(t + h) − X(t) = 1
)

h
+ lim

h→0

∞∑

k=2

Pr
(

X(t + h) − X(t) = k
)

h

= λ + lim
h→0

∞∑

k=2

Pr
(

X(t + h) − X(t) = k
)

h
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applying (a). Now if the limit and the infinite sum could be interchanged, then second term
would be zero by (c). Since it is not possible to interchange infinite processes in general, it
is necessary to make the assumption (b) explicitly.

It is possible to test, by gathering data, whether or not the above assumptions are
reasonable in any particular setting. In each of the examples noted above there is a con-
siderable body of evidence to support making exactly these assumptions.

This small set of assumptions is sufficient to enable us to deduce the distribution of
X(t) for each t. For convenience we begin with a definition.

34.5. Definition.

For k = 0, 1, · · · set
Pk(t) = Pr (X(t) = k)

34.6. Lemma.

With P0(t) defined as above, P0(t) = e−λt

Proof. Using the fact that X(t) is non-decreasing,

P0(t+ h) = Pr (X(t+ h) = 0)

= Pr
(
X(t) = 0, X(t+ h) −X(t) = 0

)

(since X(0) = 0 by assumption)

= Pr
(
X(t) −X(0) = 0, X(t+ h) −X(t) = 0

)

= Pr
(
X(t) −X(0) = 0) Pr (X(t+ h) −X(t) = 0

)

= P0(t)Pr
(
X(t+ h) −X(t) = 0

)
.

Thus,

lim
h→0

P0(t+ h) − P0(t)

h
= lim

h→0
P0(t)

Pr
(
X(t+ h) −X(t) = 0

)
− 1

h

= −λP0(t)

by assumption (b) for Poisson Processes. This implies that

P ′
0(t) = −λP0(t)
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Since P0(0) = 1, it follows that

P0(t) = e−λt

34.7. Theorem.

For each t

Pr
(
X(t) = k

)
=

(λt)ke−λt

k!

i.e., X(t) has a Poisson distribution.

Proof. As in the lemma, first compute

Pk(t+ h) = Pr
(
X(t+ h) = k

)

=

k∑

i=0

Pr
(
X(t) = k− i,X(t+ h) −X(t) = i

)

=
k∑

i=0

Pr
(
X(t) = k− i

)
Pr

(
X(t+ h) −X(t) = i

)

=

k∑

i=0

Pk−i(t)Pr
(
X(t+ h) −X(t) = i

)

Now re-write the sum segregating the first two terms:

Pk(t+ h) =

= Pk(t)Pr
(
X(t+ h) −X(t) = 0

)
+

+ Pk−1(t)Pr
(
X(t+ h) −X(t) = 1

)
+

+

k∑

i=2

Pk−i(t) Pr
(
X(t+ h) −X(t) = i

)
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So

lim
h→0

Pk(t+ h) − Pk(t)

h
=

= lim
h→0

Pk(t)
Pr

(
X(t+ h) −X(t) = 0

)
− 1

h
+

+ lim
h→0

Pk−1(t)
Pr

(
X(t+ h) −X(t) = 1

)

h
+

+ lim
h→0

k∑

i=2

Pk−i(t)Pr
(
X(t+ h) −X(t) = i

)

h

Now applying (b)c to the first term, (a) to the second and (c) to the third, we see that

P ′
k(t) = −λPk(t) + λPk−1(t) + 0

or
P ′
k(t) = λ

(
Pk−1(t) − Pk(t)

)
k = 1, 2, 3, · · · (34.1)

Thus applying the Lemma to the case k = 1 gives

P ′
1(t) = λ

(
P0(t) − P1(t)

)

= λe−λt − λP1(t)

Solving the differential equation gives

P1(t) = λte−λt

Induction on equation (34.1) gives the result.

Because we have assumed that the process has stationary increments, we can actu-
ally conclude the following.

34.8. Corollary.

For each 0 ≤ s < t

Pr
(
X(t) = k

∣
∣X(s) = 0

)
=

(λ(t− s)ke−λ(t−s)

k!
(34.2)
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Indeed, (34.2) coupled with independent and stationary incements are sufficient to
establish (a), (b) and (c) of definition 34.4, and so provides both a necessary and sufficient
condition for a Poisson Process.

34.9. Theorem.

Let {X(t)} be a counting process that having both independent and stationary increments.
Suppose that for each 0 ≤ s < t

Pr
(
X(t) = k

∣
∣X(s) = 0

)
=

(λ(t− s)ke−λ(t−s)

k!
(34.3)

Then {X(t)} is a Poisson Process.

The proof simply involves verifying the limits and is left to the exercises.
The Poisson Process has another random quantity in addition to the number of events

X(t) that occured prior to time t. This second quantity involves the waiting time between
events, or the arrival time of the first jump from the present state.

34.10. Definition.

For fixed t > 0, the arrival time of the first jump is the random variable

τ1(t) = +∞ if X(t+ s) = X(t) for all s ≥ 0

and

τ1(t) = inf{s > 0 : X(t+ s) 6= X(t)}

otherwise.

34.11. Proposition.

If {X(t)} is a time-homogeneous counting process, then the distribution of τ1(t) is inde-
pendent of t.

Proof. Note that τ1(t) > u for some u > 0 and if an only if

X(t+ s) = X(t) 0 ≤ s ≤ u.
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Thus applying the time homogeneity of {X(t)}
Pr (τ1(t) > u) = Pr (X(t+ s) = X(t)) for 0 ≤ s ≤ u)

= Pr (X(s) = X(0)) for 0 ≤ s ≤ u)

= Pr (τ1(0) > u)

showing that τ1(t) and τ1(0) have the same distribution for all t.

From this we are able to conclude that the arrival time between events in a Poisson
Process is exponentially distributed.

34.12. Corollary.

If {X(t)} is the Poisson Process, then τ1(t) is exponentially distributed with parameter λ.

Proof. Since X(t) is non-decreasing and X(0) = 0

Pr (τ1(t) > u) = Pr (τ1(0) > u)

= Pr

(

X(s) = 0 for 0 ≤ s ≤ u

)

= e−λu

applying Theorem 34.6

This important corollary holds in more general settings as we shall see in the next
section on Markov Jump Processes. It also provides another way of viewing the Poisson
Process.

34.13. Theorem.

Let {Yi} be independent and identically distributed exponential random variables having
paramenter λ and let Si = Y1 + · · · + Yi. Define

N(t) = the # of Si’s that are less than or equal to t.

Then {N(t)} is a Poisson Process.
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Note that N(t) = n if and only if

Y1 + · · · + Yn ≤ t < Y1 + · · · + Yn + Yn+1.

Thus N(t) counts the number of occurances of a random event (such as arrivals in a
queue) where the time between the nth and (n + 1)st event is exponentially distributed.
We leave the proof of this result to the problems as well.
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34. Poisson Processes: Problems.

1. Let {X(t)} be a Poisson Process.
(a) For 0 < t < s show that

Pr (X(t) = 1
∣
∣X(s) = k) = k

(
t

s

)(

1 − t

s

)k−1

(b) For 0 < t < s show that

Pr (X(t) = m
∣
∣X(s) = k) =

(
k

m

)(
t

s

)m (

1− t

s

)k−m

2. Let {X(t)} be a process that having both independent and stationary increments. Suppose that
for each 0 ≤ t < s

Pr
(
X(s − t) = k

)
=

(λ(s − t)ke−λ(s−t)

k!

Then {X(t)} is a Poisson Process.

3. Let {X(t)} be a Poisson process with paramter λ. Suppose that each arrival is registered by a
sensor with probability p independent of other arrivals. Let {Y (t)} count the number of registered
arrivals. Show that {Y (t)} is a Poisson process with parameter pλ. Hint: consider

Pr (Y (t) = k) =

∞∑

m=0

Pr (Y (t) = k andX(t) = m + k)

and use Corollary 34.8 and Theorem 34.9.)

4. Let {Yi} be independent and identically distributed exponential random variables having para-
menter λ and let Si = Y1 + · · · + Yi. Define

N(t) = the # of Si’s that are less than or equal to t.

(a) Show that

Pr (N(t) = k) =
(λt)ke−λt

k!

(b) Show that for 0 ≤ r < t

Pr (N(r) = m and N(t) − N(r) = k) =
(λr)me−λr

m!

[λ(t − r)]ke−λ(t−r)

k!
.
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(c) Use (b) to show that for 0 ≤ r < t

Pr (N(t) − N(r) = k
∣
∣N(r) = m) =

[λ(t − r)]ke−λ(t−r)

k!

(d) Use (b) to show that for 0 ≤ r < t

Pr (N(r) − N(0) = m and N(t)− N(r) = k) = Pr (N(r) − N(0) = m)Pr (N(t) − N(r) = k)

which verifies independent increments for adjacent intervals.
(e) Use (d) to establish that if s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn then the random variables

N(t1) − N(s1), N(t2) − N(s2), · · · , N(tn) − N(sn)

are independent. Hint: first establish the conclusion for a pair of non-adjacent intervals by

inserting additional intervals so that all are adjacent.
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35. Markov Pure Jump Processes

In general a stochastic process is a collection of random variables {X(t)} defined on a
common probability space (Ω, E,Pr ) and indexed by a real parameter t ∈ R. In order to
have a useful structure, we must of course make additional assumptions. Thus we assume
that each of the random variables X(t) shares the same range or state space S, i.e., for
each t

X(t) : Ω → S.

35.1. Definition.

The phase space T ⊆ R is the collection of indices T = {t}. Where T is countable the
resulting process is called a chain.

35.2. Definition. Jump Processes.

In this section we consider the case where the phase space T is the non-negative real numbers
[0,∞) but retain the assumption that state space S is discrete.

The result is called a jump process since X(t) stays constant for a time, then ‘jumps’ to a
new value, stays there for a period of time, then jumps again.

There are many examples of jump processes. One of common experience would
be the server queues in a grocery store. In such a queue, we might let X(t) denote
the number of persons standing in line. Persons arrive in the line at random times, so
the random variable describing arrival times would be continuous. Similarly, customers
leave the queue at random times – perhaps dependent upon the size or complexity of
the contents of their shopping cart – so the serving times are likewise continuous random
variables. Thus at any time there are a finite number of customers in the line, but the
number could and does change according to random continuous random variables, namely
the arrival times and serving times. This simple situation (a birth and death process)
subsumes many other examples and, with simple assumptions on how the arrivals and
departures occur, can be readily modeled.

As with chains, the Markov property is an essential assumption in analyzing jump pro-
cesses. The Markov property, which roughly says that the future depends only on the
present and not the past history of the system, is also a reasonable one in most applica-
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tions.

35.3. Definition. The Markov Property.

A jump process X(t) is said to satisfy the Markov Property if for each

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ s ≤ t ∈ T and

x1, x2, · · · , xn, x, y ∈ S

it is the case that

Pr
(
X(t) = y

∣
∣X(s1) = x1,X(s2) = x2, · · · ,X(sn) = xn,X(s) = x

)

= Pr
(
X(t) = y

∣
∣X(s) = x

)
.

In general the value of
Pr

(
X(t+ s) = y

∣
∣X(t) = x

)

could depend on both t+ s and t as well as the states x and y. If this probability depends
only the states x and y and on the elapsed time t − s then the process is said to be
time-homogeneous. More precisely:

35.4. Definition. Time Homogeneous Processes.

A Markov jump process {X(t)} is said to be time homogeneous (or have stationary incre-
ments) if

X(t+ s) −X(t) and X(s) −X(0)

are identically distributed for all s, t ≥ 0.

In this case the future state of the process depends only on the present state and
not on the time at which that state is attained. Thus a time-homogenous Markov process
can be thought of ‘starting over’ again for each t and the process X̃(t) = X(t + s) has
essentially the same behaviors as the processX(t). We will suppose that all the processes
we consider are time-homogeneous without further comment.

More formally, the following version of the Markov property is equivalent to the above
and is the one we will use.

Pr
(
X(t) = y

∣
∣X(s1) = x1,X(s2) = x2, · · · ,X(sn) = xn,X(s) = x

)

= Pr
(
X(t− s) = y

∣
∣X(0) = x

)
.
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35.5. Definition.

The transition probabilities can thus be defined as

p(x,y)(t) = Pr
(
X(t) = y

∣
∣X(0) = x

)
.

Because of stationary increments, for all s, t ≥ 0

p(x,y)(t) = Pr
(
X(t+ s) = y

∣
∣X(s) = x

)
.

Notice for each t that
(
p(x,y)(t)

)
is a – potentially infinite – matrix

P(t) =
(
p(x,y)(t)

)

(x,y)∈S×S

called the transition matrix.

For the Poisson Process, we showed in the last section that

p0k(t− s) = Pr
(
X(t) = k

∣
∣X(s) = 0

)
=

(λ(t− s)ke−λ(t−s)

k!

Since a Poisson Process has stationary increments and can only transition from x to y >
x, we are able to deduce from this a closed form for the transition probabilities pxy(t)–see
the exercises.

However, it is generally quite difficult to write down the transition probabilities px,y(t) for
any particular process. It is possible to deduce a differential equation which can sometimes
be solved, which is the approach that we used in the special case of the Poisson Process.
One of the primary results of this section will be to write down a differential equation for
general jump processes that the transition probabilities must always solve. Preliminary to
that, we will show that the the waiting times between jumps are exponetially distributed.

First observe that the following analogue of (26.4) is true for jump processes.
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35.6. Theorem.

For any n let 0 ≤ t0 < t1 < · · · < tn and let {x0, x1, · · · , xn} be states. Then

Pr (X(t1) = x1, . . . ,X(tn) = xn
∣
∣X(t0) = x0)

= Px0,x1(t1 − t0) · · ·Pxn−1 ,xn(tn − tn−1).

Proof. For example in the case n = 2,

Pr (X(t1) = x1, X(t2) = x2

∣
∣X(0) = x0)

= Pr (X(t1 = x1

∣
∣X(0) = x0) Pr (X(t2) = x2

∣
∣X(t1) = x1,X(0) = x0)

= Px0,x1(t1) Pr (X(t1 = x1

∣
∣X(0) = x0)Pr (X(t2) = x2

∣
∣X(0) = x0)

= Px0,x1(t1 − t0)Px1,x2(t2 − t1)

The general case follws by an easy induction.

The transition matrix has the following important property.

35.7. Lemma.

The matrix P(t) is a semigroup, i.e., for s, t ≥ 0

P(t+ s) = P(t)P(s) (35.1)

where the product is understood to be matrix multiplication.
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Chapman-Kolmogorov equationProof. This follows immediately from the following calculation

p(x,y)(t+ s) = Pr
(
X(t+ s) = y

∣
∣X(0) = x

)

=
∑

u∈S
Pr

(
X(t+ s) = y, X(t) = u

∣
∣X(0) = x

)

=
∑

u∈S
Pr

(
X(t+ s) = y

∣
∣X(t) = u

)
Pr

(
X(t) = u

∣
∣X(0) = x

)

=
∑

u∈S
Pr

(
X(s) = y

∣
∣X(0) = u

)
Pr

(
X(t) = u

∣
∣X(0) = x

)

=
∑

u∈S
p(x,u)(t)p(u,y)(s)

The semigroup identity (35.1) in the above lemma is one form of the Chapman-

Kolmogorov equation.
The transition function P(t) can be quite irregular, as can the process {X(t)}. A

modest continuity assumption on P(t) can help somewhat. We will assume in the sequel
that

35.8. Definition. Continuity Assumption of P(t).

We will assume that
lim
h↓0

P(h) = I

where I is the identity matrix.

Since P(0) = I the above assumption implies that the coordinate entries p(x,y)(t) are
continuous at t = 0. The Chapman-Kolmogorov equation implies continuity everywhere of
the coordinates of P if P is continuous at t = 0. Recall
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35.9. Definition. Delta Function.

For any numbers x and y define

δxy =
{

1 if x = y
0 otherwise

35.10. Proposition.

If
lim
h↓0

p(x,y)(h) = δ(x, y)

Then p(x,y)(t) is continuous for each fixed x and y and each t ≥ 0.

Proof. For h ↓ 0 it follows readily from the Chapman-Kolmogorov equation that

lim
h↓0

P(t+ h) = P(t)

where the limit is understood to mean coordinate-by-coordinate. Similarly, for h ↑ 0 the
conclusion follows from the above and

P(h)(P(t) − P(t− h)) = P(h)P(t) − P(h)P(t− h)

= P(h+ t) − P(t)

applying the Chapman-Kolmogorov equation.

While the paths {X(t)} can be quite irregular, the above assumptions imply that they
have a property called stochastic continuity.

35.11. Theorem.

A Markov jump process satisfying the above assumptions is stochastically continuous, i.e.,

lim
h↓0

Pr (X(t+ h) 6= X(t)) = lim
h↑ 0

Pr (X(t+ h) 6= X(t)) = 0.
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Proof. First observe that for fixed j

Pr (X(t+ h) 6= X(t)
∣
∣X(t) = j) = 1 − Pr (X(t+ h) = j

∣
∣X(t) = j)

= 1 − Pr (X(h) = j
∣
∣X(0) = j)

= 1 − p(j,j)(h)

Thus applying the Markov Property

Pr (X(t+ h) 6= X(t)
∣
∣X(0) = i) =

=
∑

j

Pr (X(t) = j
∣
∣X(0) = i)Pr (X(t+ h) 6= X(t)

∣
∣X(t) = j)

=
∑

j

p(i,j)(t)(1 − p(j,j)(h))

Now we can apply the Dominated Convergence Theorem to let h ↓ 0 and obtain

lim
h↓0

Pr (X(t+ h) 6= X(t)|X(0) = i) = 0.

A second application of the same theorem yields

lim
h↓0

∑

i

Pr (X(t+ h) 6= X(t)
∣
∣X(0) = i)Pr (X(0) = i) = 0

from which
lim
h↓0

Pr (X(t+ h) 6= X(t)) = 0.

For limh↑ 0, note that if h < 0

Pr (X(t+ h) = X(t)
∣
∣X(0) = i) =

∑

j

p(i,j)(t+ h)p(j,j)(h)

≥
∑

j∈S
p(i,j)(t+ h)p(j,j)(h)

where S is any finite subset of the state space. As h ↓ 0 continuity implies that

p(i,j)(t+ h) → p(i,y)(t).

Thus we conclude that as

lim
h↑ 0

Pr (X(t+ h) = X(t)
∣
∣X(0) = i) ≥

∑

j∈S
p(i,j)(t)p(j,j)(h).

The right hand side goes to one as S increases to include the entire state space, which
shows that

lim
h↑ 0

Pr (X(t+ h) = X(t)) = 1

completing the proof.
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The transition probabilities give us the probability of jumping from state x to state y
but do not tell us when that jump might occur. It turns out that the Markov property actually
tells us quite a bit about the distributions of the ‘jump’ times.

35.12. Definition.

For fixed t > 0 set

τ1(t) = +∞ if X(t+ s) = X(t) for all s ≥ 0

and
τ1(t) = inf{s > 0 : X(t+ s) 6= X(t)}

otherwise.

Note that τ1(t) is the waiting time from time t until the first jump to a new state, so the jump
itself occurs at time T1 = t+ τ1(t). Sometimes τ1(t) is called the sojourn time, since it
reflects the waiting time between jumps, not the time of the next jump.

To emphasize that τ1(t) is a random variable defined on a probability space
(Ω, E,Pr ), we should technically write τ1(t)(ω) in the above definition. However, the
underlying probability space (Ω, E,Pr ) rarely plays an explicit role in our calculations and
so for convenience we will most often write

τ1(t) = inf{s > 0 : X(t+ s) 6= X(t)}

where it is understood that the formulae involve random variables defined on Ω.
The following important theorem says that the waiting times between jumps are expo-

nentially distributed.

35.13. Theorem.

For each state x ∈ S there is a λx ∈ [0,∞] such that for each t ≥ 0

Pr
(
τ1(t) > u

∣
∣X(t) = x

)
= e−λxu, u ≥ 0

where it is understood that if λx = ∞ then e−λxu ≡ 0.

Before proving this theorem, we first prove two preliminary lemmae.
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35.14. Lemma.

If τ1(t) > u then for 0 ≤ s ≤ u

τ1(t+ s) = τ1(t) − s.

This makes intuitive sense. If T1 is the actual time of the next jump, then at time t the
time remaining to T1 is τ1(t) = T1 − t. If 0 ≤ s ≤ u < τ1(t), then at time t+ s, the next
jump hasn’t yet occured, and won’t until time T1. Thus the time remaining to T1 from time
t+ s is

τ1(t+ s) = T1 − (t+ s)

= T1 − t− s

= τ1(t) − s

More formally:

Proof. If τ1(t) > u then for 0 ≤ s ≤ u it follows that

X(t+ s) = X(t).

Now fix s0 with 0 ≤ s0 ≤ u, so that

τ1(t+ s0) = inf{s > 0 : X(t+ s0 + s) 6= X(t+ s0)}.

For this choice of s0,

X(t+ s0) = X(t)

and so
τ1(t+ s0) = inf{s > 0 : X(t+ s0 + s) 6= X(t+ s0)}

= inf{s > 0 : X(t+ s0 + s) 6= X(t)}
= inf{s > s0 : X(t+ s) 6= X(t)} − s0

= inf{s > 0 : X(t+ s) 6= X(t)} − s0

= τ1(t) − s0
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35.15. Corollary.

For u, v > 0 the events
E1 = {τ1(t) > u+ v}

and
E2 = {τ1(t) > u and τ1(t+ u) > v}

are the same.

Proof. We first show E1 ⊆ E2. If ω ∈ E1, then clearly τ1(t) > u+ v > u. Further

τ1(t+ u) = τ1(t) − u > u+ v − u = v

so ω ∈ E2.
For the reverse inclusion, if ω ∈ E2, then τ1(t) > u implies that

τ1(t+ u) = τ1(t) − u.

From this we have
v < τ1(t+ u)

= τ1(t) − u

and ence E2 ⊆ E1.

Proof. Since the process X(t) is time-homogeneous the conditional probability in ques-
tion is independent of t, a fact that we shall use later in the proof.

Fix x ∈ S and set

φ(u) = Pr
(
τ1(t) > u

∣
∣X(t) = x

)
.

Note that
1 − φ(u) = Pr

(
τ1(t) ≤ u

∣
∣X(t) = x

)

and hence 1 − φ is a probability distribution function. Thus φ(u+) and φ(u−) both exist
and φ is right-continuous.

If φ(0) = 0 then we may take λx = +∞ and the result is immediate. Thus we
assume without loss of generality that φ(0) > 0.
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Now for u, v > 0 the sets

E1 = {ω ∈ Ω : τ1(t) > u+ v}

and
E2 = {ω ∈ Ω : τ1(t) > u & τ1(t+ u) > v}

are the same, so

φ(u+ v) = Pr
(
τ1(t) > u+ v

∣
∣X(t) = x

)

= Pr
(
τ1(t) > u, τ1(t+ u) > v

∣
∣X(t) = x

)

= Pr
(
τ1(t) > u

∣
∣X(t) = x

)
Pr

(
τ1(t+ u) > v

∣
∣X(t) = x, τ1(t) > u

)

= φ(u)Pr
(
τ1(t+ u) > v

∣
∣X(t) = x, τ1(t) > u

)
∗

Now if X(t) = x and τ1(t) > u, then X(t+ u) = x. Then by the Markov Property

Pr
(
τ1(t+ u) > v

∣
∣X(t) = x, τ1(t) > u

)
= Pr

(
τ1(t+ u) > v

∣
∣X(t+ u) = x

)

= φ(v)

the last equality following from the fact that X(t) is time-homogeneous.
Substituting this into (∗) gives

φ(u+ v) = φ(u)φ(v). ∗∗

But now taking u = v = 0 in (∗∗) and using φ(0) > 0 we see that φ(0) = 1. Clearly

lim
u→∞

φ(u) = 0.

Further, (∗∗) implies for any u > 0 and for any natural numbers n,m that

φ(nu) = (φ(u))n and φ(u) =

(

φ

(
u

m

))m

.

We next claim that 0 < φ(1) ≤ 1. If φ(1) = 0 then

φ(1/m) = (φ(1))
1
m = 0

and so via right-continuity φ(0) = 0, contradicting φ(0) > 0.
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Since 0 < φ(1) ≤ 1 we can set

λx = − ln(φ(1))

so that
φ(1) = e−λx .

and 0 ≤ λx < ∞. Now for any rational number r = p/q it follows that

φ(r) = φ

(
p

q

)

φ

(
1

q

)p

= φ(1)
p
q

= e−λx
p
q

= e−λxr

Since this is true for all rational numbers r the conclusion follows from the right-continuity
of φ.

In view of the above theorem, all states fall into one of three classes.

35.16. Definition.

A state x ∈ S is
(a) absorbing if λx = 0;
(b) stable if 0 < λx < ∞; and
(c) instantaneous if λx = ∞.

We can summarize these categories intuitively as follows. If x is an absorbing state,
once X(t) = x then X(t + s) = x for all s ≥ 0. If X(t) = x where x is a stable state,
then X remains equal to x for some period of time that is exponentially distributed with
parameter λx. If X(t) = x and x is an instantaneous state, then X instantly moves to
another state. While instantaneous states are of theoretical interest, they will not arise in
the applications we will consider and so we will assume that all states are either absorbing
or stable. Because of this assumption, our original intuition that τi < τi+1 for all i is now
confirmed. The following theorems summarizes our progress so far.
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35.17. Theorem.

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states and suppose that X(t) = x. If x is not absorbing then there are a sequence
of times 0 = T0 < T1 < T2 · · · < Tn ≤ t and a sequence of states x0, . . . , xn ∈ S with
the sojourn times

τn = Tn − Tn−1

that are exponentially disributed with parameter λxn and with X(Tn) = xn.

35.18. Theorem.

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states. For each non-absorbing state x there are transition probabilities Qxy

with Qxx = 0 and Qxy = Pr (X(τ1) = y
∣
∣X(0) = x). Further,

∑

y∈S
Qxy = 1

and has the property that

Pr (X(t) = x, Tn − Tn−1 > u
∣
∣X(T0) = x0, x(T1) = x1, · · · ,X(Tn) = y,

and given times T0, T1, · · ·Tn)
= Qy,xe

−λyu

The proof of the second theorem – we omit the details which are tedious – relies on
the Markov Property and on the observation that

Pr (X(t) = x, τ1 > u
∣
∣X(0) = y)

= Pr (τ1 > u
∣
∣X(0) = y)Pr (X(t) = x

∣
∣τ1 > u,X(0) = y)

= e−λyu Pr (X(t+ τ1) = x
∣
∣X(s) = y for s ≤ u)

= e−λyu Pr (X(u+ τ1) = x
∣
∣X(u) = y)

= e−λyu Pr (X(τ1) = x
∣
∣X(0) = y)

= Qy,xe
−λxu
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Nex we can deduce the following integeral equation, the last step before deducing the
differential equation that the transition function must satisfy.

35.19. Theorem.

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states. Then for all t ≥ 0 and for all states x

pxy(t) = δxye
−λxt +

∫ t

0

λxe
−λxs




∑

z 6=x
Qxzpzy(t− s)



 ds

where
δxy =

{
1 if x = y
0 otherwise

Proof. Note that if x is absorbing, Qxz = 0 and so the above reduces to the obvious fact
that

pxy(t) = δxy.

Thus we assume that x is not absorbing.
Now for x not absorbing, the event

{τ1 ≤ t,X(τ1) = z and X(t) = y}

occurs only if the first jump occurs at some time s ≤ t and takes the process to some state
z and the process then goes from z to y in the remainin (t− s) time period. Thus

Px(τ1 ≤ t, X(τ1) = z and X(t) = y) =

∫ t

0

λxe
−λxsQxzpzy(t− s)ds

This implies that

Px(τ1 ≤ t and X(t) = y) =
∑

z 6=x
Px(τ1 < t,X(τ1) = z and X(t) = y)

=
∑

z 6=x

∫ t

0

λxe
−λxsQxzpzy(t− s)ds
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We have already noted that

Px(τ1 > t and X(t) = y) = δxyPx(τ1 > t)

= δxye
−λxt

Thus

pxy(t) = Px(X(t) = y)

= Px(τ1 > t and X(t) = y) + Px(τ1 ≤ t and X(t) = y)

= δxye
−λxt +

∫ t

0

λxe
−λxs




∑

z 6=x
Qxzpzy(t− s)



 ds

as desired.

A simple change of variables yeilds

35.20. Corollary.

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states. Then for all t ≥ 0 and for all states x

pxy(t) = δxye
−λxt + λxe

−λxt

∫ t

0

e−λxs




∑

z 6=x
Qxzpzy(s)



 ds (35.2)

35.21. Corollary.

With X(t) as above, pxy(t) is continuous.
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35.22. Definition. Infinitessimal Generators

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states. Then the infinitessimal generators of X(t) are the numbers

qxy = p′
xy(0).

35.23. Theorem. The Backward Equation.

Let X(t) be a time homogeneous, non-explosive Markov jump process and having no instan-
taneous states and infitessimal generators qxy. Then

qxy =

{
−λx y = x
λxQxy y 6= x

Further ∑

y 6=x
qxy = λx = −qxx

and for t ≥ 0

p′
xy(t) = −λxpxy(t) + λx

∑

z 6=x
Qxzpzy(t).

Further
p′
xy(0) = −λxδxy + λxQxy

Proof. We can differentiate (35.2) to obtain

p′
xy(t) = −λxpxy(t) + λx

∑

z 6=x
Qxzpzy(t).
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In particular,

p′
xy(0) = −λxpxy(0) + λx

∑

z 6=x
Qxzpzy(0)

= −λxδxy + λx
∑

z 6=x
Qxzδzy

= −λxδxy + λxQxy

and the rest of the results follow.

There is a similar forward equation; we again omit the proof as it is somewhat more
complex.

35.24. Theorem. Forward Equation.

Let X(t) be as above. Then

p′
xy(t) =

∑

z

pxz(t)p
′
zy(0).

In the next section we will apply these results to the birth and death process, which in turn
models various queuing processes.
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35. Markov Pure Jump Processes: Problems.

1. Suppose that customers arrive at queue according to a Poisson Process with arrival rate λ.
Suppose that the customers all belong to one of two types, type 0 and type 1. (For example, the
customers might be in a store and one type pays with cash and the other type represents all other
payment types.) If X(t) describes the type of the last customer, i.e., if

X(t) =
{

1 if the last customer is type one
0 if there is no customer or the customer is not type one

Suppose that customer type is independent of past history and that the probability of type one is
p.
(a) Show that the chain X(t) described above has transition matrix (with q = 1− p)

P (t) =

(
0 1

0 p + qe−λt q − qe−λt

1 p− pe−λt q + pe−λt

)

Hint: Find and solve the system of differential equations represented by the backward equation.
(b) For the above chain, apply 35.6 to conclude that

Pr (τ1 > t
∣
∣X(0) = 0) = lim

n→∞

(
Pr (X(t/n) = 0

∣
∣X(0) = 0

)n

(c) Use (b) to show that Pr (τ1 > t
∣
∣X(0) = 0) = e−λt.

2.

(a) Find pxy(t) for the Poisson Process.

(b) Find the infinitessimal generators qxy of the Poisson process.
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36. Birth and Death Processes

A birth and death process is one in which it is possible to transition from state x only to
state x− 1 or state x+ 1. More formally

36.1. Definition.

A jump processX(t) having infinitessimal generators qxy is a birth and death process if

qxy = 0 whenever |x − y| > 1.

In this case, the birth rate is the number

λx = qx,x+1

and the death rate is the number
µx = qx,x−1.

Recall from the prior section that for each non-absorbing state x there are two random
quantities: the time of the first jump, τ1(x); and the value the process assumes at time τ1,
y. In the last section, we showed that τ1(x) is exponentially distributed. In this section, we
will denote the parameter of that exponential distribution by qx.
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36.2. Proposition.

Let X(t) be a birth and death process having infinitessimal generators qxy. Set qxx = −qx,
where qx is the parameter of the exponential distribution for τ1(x), the time to the first
jump. Then

−qxx = qx = qx,x+1 + qx,x−1 = λx + µx.

Moreover, if x is not absorbing, i.e., µx 6= 0 6= λx, then

Qx,x+1 =
λx

λx + µx

and
Qx,x−1 =

µx

λx + µx

Proof. It follows from the definitions and −qxx =
∑

y 6=x qxy that

−qxx = qx = qx,x+1 + qx,x−1 = λx + µx.

Similarly

λx = qx,x+1

= qxQx,x+1

= (λx + µx)Qx,x+1

Rearranging gives

Qx,x+1 =
λx

λx + µx
.

The second conclusion follows in a similar manner.

Birth and Death processes have simplified forward and backward equations which can
often be solved.
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36.3. Proposition.

Let X(t) be a birth and death process having infinitessimal generators qxy. Then the
backward equation is

p′
xy(t) = λxpx+1,y(t) − (λx + µx)pxy(t) + µxpx−1,y(t)

and the forward equation is

p′
xy(t) = λy−1px,y−1(t) − (λy + µy)pxy(t) + µy+1px,y+1(t)

Proof. For the forward equation

p′
xy(t) =

∑

z

pxz(t)p
′
zy(0)

=
∑

z

pxz(t)qzy (via 35.22)

= px,y−1(t)qy−1,y + px,y(t)qy,y + px,y+1(t)qy+1,y

= λy−1pxy(t) − (λy + µy)pxy(t) + µy+1px−1,y(t)

The proof for the forward equation is similar.

In order to solve the forward equation in various examples, we will use the variation of
constants formula below.

36.4. Proposition.

Suppose for some functions f and g and some constant α that

f ′(t) = −αf(t) + g(t).

Then

f(t) = f(0)e−αt +

∫ t

0

e−α(t−s)g(s)ds.
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Proof. We can write

f ′(s) + αf(s) = g(s)

so, multiplying by eαs,

f ′(s)eαs + αeαsf(s) = eαsg(s)

which implies
d

ds
(f(s)eαs) = eαsg(s).

Then integrating from s = 0 to s = t and applying the fundamental theorem of calculus
gives

f(t)eαt − f(0) =

∫ t

0

eαsg(s)ds.

Rearranging gives the result.

36.5. Example.

Let X(t) be a birth and death process and suppose that the state space is S = {0, 1}.
Suppose that both 0 and 1 are not absorbing. We will find pxy(t) and Pr (X(t) = 0) and
Pr (X(t) = 1).

Solution. Note that µ0 = 0 = λ1 so that the λ0 and µ1 determine the evolution of the
process. For convenience we will write λ ≡ λ0 and µ ≡ µ1. The backward equation for
(x, y) = (0, 0) becomes

p′
xy(t) = p′

00(t) = λxp1,0(t) − (λ0 + µ0)p00(t) + µ0p−1,0(t)

= λp10(t) − λp00(t) + 0

= −λ(p00(t) − p10(t))

and at (x, y) = (1, 0)

p′
xy(t) = p′

10(t) = λ1p1,0(t) − (λ1 + µ1)p10(t) + µ1p0,0(t)

= 0 − µp10(t) + µp00(t)

= µ(p00(t) − p10(t)).
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Thus upon substracting the two equations

d

dt
(p00(t) − p10(t)) = −(λ+ µ) (p00(t) − p10(t)) .

This implies that

p00(t) − p10(t) = e−(λ+µ)t.

Sustituting back into the forumula for p′
00(t) gives

p′
00(t) = −λ (p00(t) − p10(t))

= −λe−(λ+µ)t.

Thus

p00(t) = p00(0) +

∫ t

0

p′
00(s)ds

= 1 − λ

λ + µ

(

1 − e−(λ+µ)t
)

and so collecting terms

p00(t) =
µ

λ + µ
+

λ

λ+ µ
e−(λ+µ)t

In exactly the same manner

p10(t) =
µ

λ + µ
+

λ

λ+ µ
e−(λ+µ)t

Since p01(t) = 1 − p00(t) and p11(t) = 1 − p10(t) we can conclude that the transition
matrix is given by

P =







0 1

0
µ

λ + µ
+

λ

λ+ µ
e−(λ+µ)t λ

λ + µ
− λ

λ+ µ
e−(λ+µ)t

1
λ

λ + µ
+

µ

λ+ µ
e−(λ+µ)t µ

λ + µ
− µ

λ+ µ
e−(λ+µ)t






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In general a birth and death process need not be non-explosive. While we will not
pursue this topic here, a simple condition that is sufficient to guarantee that birth and death
process be nonexplosive is

λx ≤ Ax +B

for some constants A,B > 0. This condition is fulfilled in the examples considered in
this section. The following theorem collects some facts that will be useful in understanding
more complex birth and death processes.

36.6. Theorem.

Let {ξ1, · · · , ξn} be a collection of independent exponentially distributed random variables
having parameters {α1, · · · , αn}. Then
(a) the random variable min{ξ1, · · · , ξn} is an exponentially distributed random variable

having parameter α1 + · · · + αn;
(b) For each k = 1, . . . , n

Pr (ξk = min{ξ1, · · · , ξn}) =
αk

α1 + · · · + αn
;

(c) with probability one the random variables {ξ1, · · · , ξn} take on n distinct values.

Proof. For (a) observe that

Pr (min{ξ1, · · · , ξn} > t) = Pr (ξn > t, ξ2 > t, · · · , ξn > t)

= Pr (ξn > t) · · · Pr (ξn > t)

= e−α1t · · · e−αnt

= e−(αk+···+αn)t

from which (a) follows.
For (b) fix k with 1 ≤ k ≤ n and set

ηk = min
j 6=k

{ξj}

and

βk =
∑

j 6=k
αj.
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Then by (a) ηk is exponentially distributed with parameter βk. Further since ξk and ηk are
independent

Pr (ξk = ηk) = Pr (ξk ≤ ηk)

=

∫ ∞

0

∫ ∞

z

αke
−αkuβke

−βkv dv du

=

∫ ∞

0

αke
−αkue−βku du

=
αk

αk + βk

=
α1

α1 + · · · + αn

which establishes (b).
For (c) it is sufficient to show that Pr (ξi 6= ξj) = 1 if i 6= j. However since ξi and ξj

are continuous random variables having a continuous joint density,

Pr (ξi 6= ξj) =

∫ ∫

{(x,y)
∣
∣x6=y}

f(x, y)dxdy = 1.

36.7. Example. Branching Process.

The branching process is similar to the branching chain. We consider a population of par-
ticles where each particle survives for a period of time that is exponentially distributed with
parameter q. At the end of the survival time, the particle either splits into two particles with
probability p or vanishes completely with probability (1 − p). We assume that the particles
behave independently of each other and of elapsed time. We let X(t) count the number of
particles at time t. We will find the infinitessimal parameters for this process.

Solution. Suppose that X(0) = x so that there are initially x particles. Then each
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particle has a lifespan ξi:

ξ1 = time that particle one splits or vanishes

...

ξk = time that particle k splits or vanishes

...

ξx = time that particle x splits or vanishes

and
τ1 = min{ξ1, · · · , ξx}.

Then τ1 is exponentially distributed with parameter xq. Further

Qx,x+1 = p and Qx,x−1 = (1 − p)

so that
λx = qxQx,x+1 = xqp

and
µx = qxQx,x−1 = xq(1 − p).

We remark in passing that a Poisson Process is a branching process with p = 1.

36.8. Example. Branching Process with Immigration

In this case we suppose that new particles are added to the system according to a Poisson
Process with parameter λ and that all particles behave independently. We will find the
infinitessimal generators.

Solution. As before, we suppose thatX(0) = x and let

ξk = time when particle k divides or disappears.

Let η be the time that the first new particle enters the system, so that the time of the first
jump is

τ1 = min{ξ1, · · · , ξx, η}.
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Then τ1 is exponentially distributed with parameter xq + λ and

Pr (τ1 = η) =
λ

xq + λ
.

Thus

Qx,x+1 =
λ

xq + λ
+

xq

xq + λ
p

while

Qx,x−1 =
xq

xq + λ
(1 − p).

This in turn implies
λx = qxQx,x+1 = xqp+ λ

and
µx = qxQx,x−1 = xq(1 − p).

Before turning to the next example, we deduce a useful property of the Poisson Process.

36.9. Theorem.

Let X(t) be a Poisson Process with parameter λ. Suppose that X(t) = k and, for
i = 1, · · · , k, set

τi = time that jump i occurs.

Then the random variables
τi
∣
∣X(t)=k

are uniformly distributed on [0, t].

Proof. Suppose for example that X(t) = k and fix a partition

0 = t0 < t1 < · · · < tn = t

If we then fix i and let

Xi(t) = number of jumps between ti−1 and ti
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then each Xi is a Poisson random variable with parameter λ(ti − ti−1), the random vari-
ables Xi are independent and

X1 +X2 + · · · +Xn = X(t).

In turn, X(t) has a Poisson distribution with parameter λt. Thus if we select any integers
x1, . . . , xm with

0 < x1 < x2 < · · · < xm

and so that x1 + · · ·xm = k then

Pr (X1 = x1, . . . ,Xm = xm
∣
∣X(t) = k)

= Pr (X1 = x1, . . . ,Xm = xm
∣
∣X1 + · · · +Xm = k)

=
Pr (X1 = x1, . . . ,Xm = xm, X1 + · · · +Xm = k)

Pr (X1 + · · · +Xm = k)

=
Pr (X1 = x1, . . . ,Xm = xm)

Pr (X1 + · · · +Xm = k)

=

m∏

i=1

λ(ti − ti−1)
xie−λ(ti−ti−1)

xi!

(λt)ke−λt

k!

=
k!

∏m
i=1 xk!

m∏

i=1

(
ti − ti−1

t

)xi

These multinomial probabilities are exactly those that result form choosing the k arrival
times indepndently and uniformly from [0, t].
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36.10. Example. Infinite Server Queue.

Suppose that customers arrive in a queue according to the Poisson Process with parameter
λ and are immediately served (so this is an M/M/∞ queue) where the service times are
independent of each other and the arrivals and are exponentially distributed with parameter
µ. We will consider the total number of customers being served, X(t). This is a special case
of the Branching Chain with immigration where q = µ and p = 0. Thus λx = λ and µx =
xµ. We will find the transition function pxy(t) and deduce a formula for limt→∞ pxy(t).

Solution. If a customer arrives at some time s ∈ (0, t], the probability that the customer
is still being served at time t is e−µ(t−s). Thus if the arrival time is chosen uniformly from
(0, t], then the probability that the customer is still being served at time t is

pt =
1

t

∫ t

0

e−µ(t−s) ds =
1 − e−µt

µt
.

Now if X1(t) is the number of customers who arrived in the interval (0, t] who are
still being served at time t, and if Y (t) is the total number of customers who arrive in the
interval (0, t] then if follows that

X1(t)
∣
∣Y (t)=k

is binomially distributed with paramters k and pt, i.e.,

Pr (X1(t) = n
∣
∣Y (t) = k) =

(
k

n

)

pnt (1 − pt)
k−n.
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Since Y (t) has a Poisson distribution with parameter λt it follows that

Pr (X1(t) = n) =

∞∑

k=n

Pr (Y (t) = k, X1(t) = n)

=

∞∑

k=n

Pr (Y (t) = k)Pr (X1(t) = n
∣
∣Y (t) = k)

=

∞∑

k=n

(λt)ke−λt

k!

k!

n!(k− n)!
pnt (1 − pt)

k−n

=
(λtpt)

ne−λt

n!

∞∑

k=n

(λt(1 − pt))
k−n

(k− n)!

=
(λtpt)

ne−λt

n!

∞∑

m=0

(λt(1 − pt))
m

m!

=
(λtpt)

ne−λt

n!
eλt(1−pt)

=
(λtpt)

ne−λtpt

n!

In particular, X1(t) has a Poisson distribution with parameter

λtpt =
λ

µ
(1 − e−µt).

Next suppose that X(0) = x be the number of customers being initially served and
let X2(t) be the number of those initial customers still being served at time t. Then

X(t) = (number of customers present at time 0 still being served at time t) + · · ·
· · · + (number of customers who arrive in (0, t] still being served at time t)

= X2(t) +X1(t)

Further, X1(t) and X2(t) are independent and X2(t) has a binomial distribution with
parameters x and e−µt. Since X(t) = X1(t) +X2(t) it follows that

pxy(t) = Px(X(t) = y) =

min(x,y)
∑

k=0

Px(X2(t) = k)P (X1(t) = y − k)
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and so

pxy(t) =

min{x,y}
∑

k=0

[(x

k

)

e−kµt(1 − e−µt)x−k×

×

(
λ
µ
(1 − e−µt

)(y−k)

(y − k)!
exp

(

−λ

µ
(1 − e−µt

) ]

.

Notice that if k ≥ 1 then all of the terms in the above sum tend to zero as t → ∞. Thus

lim
t→∞

pxy(t) =
(λ/µ)ye−λ/µ

y!
.
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36. Birth and Death Processes: Problems.

1. Let X(t) be a two-state birth and death chain and set

π(0) =
µ

λ + µ
and π(1) =

λ

λ + µ
.

(a) Show that for x = 0, 1

lim
t→∞

Pr (X(t) = x) = π(x).

(b) Show that the distribution of X(t) is independent of t if and only if the inititial distribution
for X(0) is π.

(c) Find µ(t) = E(X(t)).

2. Consider a birth and death chain having three states S = {0, 1, 2} and birth rates such that
λ0 = µ2. Find π0y(t) for y = 0, 1, 2

3. In the infinite server queue, suppoes that there are X(0) = x customers initially present. Find
E(X(t)

∣
∣X(0) = x).

4. Consider a birth and death process X(t) with

λx = xλ and µx = xµ

for constants λ ≥ 0 and µ ≥ 0. Set

µx(t) = Ex(X(t)) =

∞∑

y=0

ypxy(t).

(a) Write the forward equation for the process.
(b) Use the forward equation to show that

µ′
x(t) = (λ − µ)µx(t)

(c) for all x Conclude that µx(t) = xe(λ−µ)t.
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pure death process5. Let X(t) be a birth and death process for which λx = 0 for allx (such a process is called a pure
death process).
(a) Write the forward equation
(b) Find pxy(t)
(c) Solve for pxy(t) in terms of px,y⇁1(t).
(d) Find px,x−1(t)
(e) Show that if µx = xµ for some constant µ then

pxy(t) =

(
x

y

)

(e−µt)y(1 − e−µt)x−y

for 0 ≤ y ≤ x.
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37. Queueing Processes

Roughly speaking, the study of queues involves the study of waiting in line. In order to
describe a queue, it is generally necessary to specify several components:
(i) a description of how new customers arrive in the queue;

(ii) a description of how customers are served;
(iii) how many servers (channels) are available;
(iv) the capacity of the system (how many customers are permitted);
(v) the size of the population of customers; and

(vi) the service priority.
There are several standard possibilities for each of the above components. This classifica-
tion scheme is referred to as Kendall’s Notation.
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37.1. Definition. Kendall’s Notation

(i) a description of how new customers arrive in the queue;
(a) M: stands for Markovian which is understood to also specify inter-arrival times

that have an exponential distribution;
(b) M[X]: Markovian where customers arrive in groups described by the random variable

[X];
(c) D: for deterministic (or degenerate) arrivals;
(d) Ek: Erlang arrivals with parameter k;
(e) G: for general independent arrivals, sometimes written as GI.

(ii) a description of how customers are served;
(a) M: stands for Markovian which is understood to also specify service times that

have an exponential distribution;
(b) M[X]: Markovian where customers are served in groups described by the random

variable [X];
(c) D: for deterministic (or degenerate) service times;
(d) Ek: Erlang service times nwith parameter k;
(e) G: for general independent servers, sometimes written as GI.

(iii) how many servers (channels) are available;
(iv) the capacity of the system (how many customers are permitted); if the queue is at

capacity, then additional customers are turned away or lost;
(v) the size of the population of customers; and

(vi) the service priority.
(a) FIFO: first in first out;
(b) LIFO: last in first out;
(c) SIRO: service in random order;
(d) other service protocols;

If omitted, (iv) and (v) are assumed to be infinite. However, if either (iv) or (v) are included
in the specification, then they must both be included to avoid confusion. Thus a queue
specified by M/M/k/n/∞ would be one with exponential arrival and service times, with k
servers, with a maximum of n customers in the queue at once and with an infinite number
of potential customers.
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37.2. Example.

Let X(t) be a queue in which the new customers arrive according a Poisson process with
parameter λ, there are n servers, each having service times that are exponentially distributed
with parameter µ. If one supposes that the arrivals are independent of one another and the
servers and that the servers are independent of one another, then the result is an M/M/n
queue.

Solution. Note that this is a birth and death chain in which

qi,i−1 =

{
iµ 1 ≤ i ≤ n
nµ j > n

and
qi,i+1 = λ.
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covariance

cross-covariance

autocovariance38. Second Order Processes

38.1. Definition.

Let {X(t)} be a stochastic process and suppose that E(X(t)) < ∞ for all t. Then the
mean function for {X(t)} is the function

µX(t) = E(X(t)).

Similarly, if E(X(s)X(t)) < ∞ for all s, t then the covariance function is

rX(s, t) = cov(X(s),X(t)) = E
(

X(s)X(t)
)

− E(X(t))E(X(s)).

Recall that if U and V are random variables then the covariance of U and V is

cov(U, V ) = E(UV ) − E(U)E(V ).

This is sometimes referred to as the cross-covariance, while the covariance function for
X(t) is sometimes called the autocovariance function.

Note that var(X(t)) = cov(X(t),X(t)) = rX(t, t). Also the covariance function is
symmetric in s and t, i.e.,

rX(s, t) = rX(t, s).

Also note that if we are given

times t1, t2, . . . , tn

and scalars α1, α2, . . . αn
and

times s1, s2, . . . , sm

and scalars β1, β2, . . . αm

and define the random variables U and V by

U =

n∑

i=1

αiX(ti) and V =

m∑

j=1

βjX(sj)
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then

cov(U, V ) = cov





n∑

i=1

m∑

j=1

αiX(ti)βjX(sj)





=
n∑

i=1

m∑

j=1

αiβjrX(sj, tj)

In particular

var(V ) =

m∑

i=1

m∑

j=1

βiβjrX(sj, sj) ≥ 0

and so rX is non-negative definite.

38.2. Definition.

A process X(t) is second order stationary or just second order if for every τ ∈ R

the process Y defined by
Y (t) = X(t+ τ )

has the same mean and covariance functions as X(t).

38.3. Proposition.

Suppose that X(t) is a second order stationary process. Then µX(t) does not depend on t
and rX(s, t) depends only on the difference (t− s).

Proof. If Y (t) = X(t+ τ ) then

µX(t) = µY (t) = µX(t+ τ )

from which
µX(0) = µX(τ )

for all τ ∈ R. Thus µX(t) is constant and equal to µX(0) for all t.
Similarly,

rX(s, t) = rY (s, t)

= cov(Y (s), Y (t))

= cov (X(s+ τ ),X(t+ τ ))

= rX(s+ τ, t+ τ )
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Since this identity holds for all τ ∈ R it holds for τ = −s so

rX(s, t) = rX(0, t− s)

as desired.

38.4. Definition.

If X(t) is a second order stationary process, then the covariance function of X(t) is usually
written as

rX(t) ≡ rX(0, t− 0).

Note that, for a second order stationary process, var(X(t)) = rX(t, t) = rX(0).

38.5. Proposition.

Let X(t) be a second order stationary process. Then |rX(t)| ≤ rX(0) for all t ∈ R.

Proof. Note that var(X(t)) = rX(t, t) = rX(0) for all t ∈ R. Thus

rX(t) = cov(X(0),X(t))

= E
(

X(0) − E(X(0)),X(t) − E(X(t)
)

(applying Cauchy-Shwarz)

≤
√

var(X(0)) var(X(t))

= rX(0)

giving the desired conclusion.
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38.6. Example.

Let Z1 and Z2 be independent, normally distributed random variables having mean 0 and
standard deviation σ. For fixed λ ∈ R) set

X(t) = cos(λt)Z1 + sin(λt)Z2.

We will find µX(t) and rX(s, t).

Solution. Note that
µX(t) = E (cos(λt)Z1 + sin(λt)Z2)

= 0

and
rX(s, t) = cov(X(s),X(t))

= E
(

X(s)X(t)
)

−E
(

X(s)
)

E
(

X(t)
)

= E
(

X(s)X(t)
)

− 0

= E ((Z1 cos(λt) + Z2 sin(λt)) (Z1 cos(λs) + Z2 sin(λs)))

= σ2 cos(λt) cos(λs) + σ2 sin(λs) sin(λt)

= σ2 cos(λ(t− s))

Thus X(t) is second order stationary.

38.7. Example.

Let X(t) be the Poisson process with parameter λ. Find the mean and covariance functions
for X(t).

Solution. First note that µX(t) = λt and hence the Poisson Process is not a second
order stationary process.

Suppose now that 0 ≤ s ≤ t. Then

X(s) −X(0) and X(t) −X(s)
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are independent, so

cov(X(s),X(t) −X(s)) = cov(X(s) −X(0),X(t) −X(s)) = 0

since X(0) = 0 for the Poisson Process.
Thus

cov(X(s),X(t)) = cov(X(s),X(s) +X(t) −X(s))

= cov(X(s),X(s)) + cov(X(s),X(t) −X(s)))

= λs

Further, if s < 0 < t then cov(X(s),X(t)) = cov(X(s) −X(0),X(t) −X(0)) = 0,
again via independence. The other cases are similar, and thus

rX(s, t) =
{
λmin{|s|, |t|} if st ≥ 0
0 otherwise.

38.8. Example.

Let X(t) be the Poisson process with parameter λ, and set Y (t) = X(t + 1) − X(t).
Find the mean and covariance functions for X(t).

Solution. Since E(X(t)) = λt, it follows that

E(Y (t)) = E(X(t+ 1) −X(t))

= λ(t+ 1) − λt

= λ,

and hence each Y (t) has the same mean, λ.
To compute the covariance function of Y , first observe that if t − s ≥ 1, then the

random variables
X(s+ 1) −X(s) and X(t+ 1) −X(t)

are independent since
s ≤ s+ 1 ≤ t ≤ t+ 1.
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By symmetry, if |t− s| ≥ 1, then

X(s+ 1) −X(s) and X(t+ 1) −X(t)

are independent. Thus,
rY (s, t) = 0 for |t− s| ≥ 1.

Suppose next that s ≤ t ≤ s+ 1. Then

cov(Y (s), Y (t)) = cov(X(s+ 1) −X(s),X(t+ 1) −X(t))

= cov(X(t) −X(s) +X(s+ 1) −X(t), X(s+ 1) −X(t) + · · ·
· · · +X(t+ 1) −X(s+ 1)).

Now, under the assumptions on s and t,

cov(X(t) −X(s),X(s+ 1) −X(t)) = 0

cov(X(t) −X(s),X(t+ 1) −X(s+ 1)) = 0

and
cov(X(s+ 1) −X(t),X(t+ 1) −X(s+ 1)) = 0.

At the same time,

cov(X(s+ 1) −X(t),X(s+ 1) −X(t)) = var(X(s+ 1) −X(t)) = λ(s+ 1 − t).

Thus
cov(Y (s), Y (t)) = λ(s+ 1 − t)

if s ≤ t ≤ s+ 1.
Applying symmetry,

rY (s, t) +
{
λ(1 − |t− s|) |t-s|<1
0 otherwise

38.9. Theorem.

Suppose that µX(t) is continuous second order process and that rX(s, t) is jointly continuous
in (s, t). Then X(t) is continuous mean-square, i.e.,

lim
s→t

E
(

(X(s) −X(t))2
)

= 0
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Proof.

E
(

(X(s) −X(t))2
)

=
(

E(X(s)) − E(X(t))
)2

+ var (X(s) −X(t))

=
(

E(X(s)) − E(X(t))
)2

+ · · ·
· · · + var(X(s)) − 2 cov(X(s),X(t)) + var(X(t))

=
(

µx(s) − µx(t)
)2

+ · · ·
· · · + rX(s, s) − 2rX(s, t) + rX(t, t)

The latter goes to zero as s → t by virtue of the continuity of µX and rX .

38.10. Definition.

A process is Gaussian if, given any collection of

times t1, · · · , tn
and scalars α1, · · · , αn

then ∑

i

αiX(ti)

is normally distributed.

38.11. Example.

The earlier example in this section

X(t) = cos(λt)Z1 + sin(λt)Z2.

where Z1 and Z2 are independent, normally distributed random variables having mean 0 and
standard deviation σ is a Gaussian process.
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38.12. Definition.

Two processes X(t) and Y (t) are said to have the same distribution functions if for any
collection of times t1, · · · , tn the random vectors

(

X(t1), · · · ,X(tn)
)

and (

Y (t1), · · · , Y (tn)
)

have the same joint distribution functions.

Note that if X(t) and Y (t) are Gaussian and if µX(t) = µY (t) and rX = rY then it can
be shown thatX(t) and Y (t) have the same distribtuion functions.

38.13. Definition.

A process X(t) is said to be strictly stationary if for all τ ∈ R the processes X(t) and
X(t+ τ ) have the same joint distribution functions.

Note that a second order process that is strictly stationary will necessarily also be second
order stationary. The converse is not necessarily true.

Generally it is quite difficult to write down what a Gaussian process might look like.
There are several important examples of processes that turn out to be Gaussian that arise
in applications. The one that we shall study in detail is the Wiener Process, also known as
the Wiener-Levy Process.
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Brownian Motion

38.14. Definition. Wiener Process.

Suppose that a process W (t) satisifies the following conditions:
(i) W(0)=0;

(ii) If s ≤ t then W (t) − W (s) is normally distributed with mean zero and variance
σ2(t− s);

(iii) If t1 ≤ t2 ≤ · · · ≤ tn then

W (t2) −W (t1), · · · ,W (tn) −W (tn−1)

are independent.

Small particles suspended in a fluid exhibit an erratic, jittery motion know as Brownian

Motion. This motion was probably first reported by Jan Ingenhousz in 1765 while observing
carbon dust on alcohol. However, the discovery of Brownian motion is generally credited to
the botanist Robert Brown who in 1827 reported that small particles within the vacuoles of
the pollen grains exhibited a jittery motion. Brown repeated his observations with particles
of dust and thus ruled out the motion being due to a living organism. The cause of the
motion remained a major unsolved mystery througouth the nineteenth century.

The Wiener Process was introduced (in a somewhat different form) by Einstein in 1905
to provide an explanation of Brownian motion. Einstein reasoned that if the kinetic theory of
gas were correct, then a particle suspended in fluid would be subject to random collisions
from the molecules of the fluid. These millions of random collisions, of random magnitude
and in random directions, would thus cause the jitter Brown observed. Thus the position of
the particles can be described by coordinates

(

x(t) +W1(t), y(t) +W2(t), z(t) +W3(t)
)

where Wi(t) is a random variable satsifying conditions that turn out to be equivalent to
the above. Assumption (i) corresponds to choosing a coordinate system, assumption (ii)
applies the central limit theorem to assert that, on average, the cumulative effect of the
observations will be normally distributed. Assumption (iii) says that jitter over disjoint time
intervals is independent. In addition Einstein related σ2 to Avogadro’s number. Jean Perrin
subsequently provided experimental verification of the new Einstein model. The atomic
theory of matter was still controversial at this time, and so Einstein’s theory not only solved
a long-standing problem in physics but, coupled with Perrin’s work, ended the debate over
atoms and molecules. Indeed, of the five revolutionary papers published by Einstein in
1905, it was the paper on Brownin Motion that was recognized by the Nobel Prize Commit-
tee.
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sample functionsThe modern mathematical theory of the process, introduced by Einstein, was devel-
oped by Norbert Weiner and Paul Levy and so the process is most frequently called the
Weiner-Levy Process or the Weiner Process. Independently Louis Bachelier introduced a
similar process in 1900 in connection with the study of financial markets.

Since the Wiener process W (t) is a random variable, there is of course a probability
space (Ω, E,Pr ) underlying the model with

W (t) : Ω → R

for each t. Further since W (t) describes the motion of a particle, W (t) cannot have
instantenous jumps. This leads to another technical assumption associated with the Wiener
Process, namley that the sample functions W (t, ω) are continuous in t for each fixed
ω ∈ Ω. More generally, it is only necessary that the sample functions be piece-wise
continuous, and so the following technical assumption is usually included in the defining
axioms for a Wiener process:

(iv) For each fixed ω ∈ Ω the sample functions W (·, ω) are piece-
wise continouus.

We will use the above assumption when we consider the integration of the Wiener Process.

38.15. Definition.

A process that satisfies (iv) above is said to have piecewise continous sample func-

tions.

38.16. Example.

The mean and covariance functions for the Wiener Process satisfy µW (t) = and

rW (s, t) =

{

σ2 min{|s|, |t|} if st ≥ 0
0 otherwise

Solution. This can be deduced in exactly the same fashion as the similar formulae for
the Poisson Process and so is left to the exercises (see problem one at the end of this
section).
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The following formula will be useful in later applications.

38.17. Example.

If s ≥ a and t ≥ a, then

E
(

[W (t) −W (a)][W (s) −W (a)]
)

= σ2 min{(t− s), (t− a)}

Solution. Suppose, for example, that s ≥ t ≥ a ≥ 0 and apply the previous example:

E

(

[W (t) − W (a)][W (s) − W (a)]

)

= E(W (t)W (s))− E(W (t)W (a))− E(W (a)W (s)) + E(W 2(a))

= σ2t − σ2a − σ2a + σ2a

= σ2(t − a)

= σ2 min{(t − a), (t − s)}

The other cases are similar.
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38. Second Order Processes: Problems.

1. Set

X(t) =
W (t + ε) − W (t)

ε
−∞ < t < ∞

where ε > 0 is a constant. Show that X(t) is a stationary Gaussian process having covariance
function

rX(t) =
{

σ

ε

(
1 − |t|

ε

)
|t| < ε

0 otherwise

2. Find the mean and covariance of each of the following
(a) X(t) = W 2(t) for t ≥ 0
(b) X(t) = tW (1/t) for t > 0
(c) X(t) = γ−1W (γ2t) for t ≥ 0

(d) X(t) = W (t) − tW (1) for 0 ≤ t ≤ 1
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sample function

39. Integration and Differentiation of Processes

Recall that a process X(t) is actually a collection of random variables indexed by t that
map a common probability space (Ω, E,Pr ) to the real numbers R. Then for each fixed
ω ∈ Ω the process defines a function in t:

X(·, ω) : R → R

This is called the sample function since it ‘samples’ the random path X(t) along the
section defined by ω. These sample functions must have some regularity assumptions in
order for integration along the random path X(t) to be well-defined. For our purposes it
will be sufficient for the sample functions to be piecewise continuous.

39.1. Definition.

A function f : R → R is said to be piecewise continuous if
(i) for each t, f(s) has a finite limit as s approaches t from the right;

(ii) for each t, f(s) → f(t) as s → t from the left;
(iii) on any interval [a, b] the function f(t) has only finitely many discontinuities.

Notice in particular that jump processes and the Weiner Process will satisfy the above
conditions. Piecewise continuity is suffient to assure that the approximating sums

n∑

i=1

f(t∗)(ti − ti−1)

converge to
∫ b

a
f(t)dt as the mesh max{ti − ti−1} tends to zero. Thus if X(t) has

piecewise continuous sample functions, then for each fixed ω ∈ Ω

n∑

i=1

X(t∗, ω)(ti − ti−1)

converge to
∫ b

a
X(t, ω)dt as the mesh max{ti − ti−1} tends to zero. This implies that

the random variables
n∑

i=1

X(t∗)(ti − ti−1)
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converge to a random variable
∫ b

a
X(t) dt as the mesh max{ti − ti−1} tends to zero.

In the sequel we will assume that all processes we consider have piecewise continuous
sample functions. We will also assume that the expectation operator E(·) and the integral
operator can be interchanged, so that for example

E

(
∫ b

a

X(t)dt

)

=

∫ b

a

E(X(t))dt.

Thus if X(t) has mean function µX(t) and covariance function rX(s, t) and if Y =
∫ b

a X(t) dt, then

µY = E

(
∫ b

a

X(t) dt

)

=

∫ b

a

µX(t) dt

and

cov

(
∫ b

a

f(t)X(t)dt

∫ d

c

g(s)X(s)ds

)

=

∫ b

a

∫ d

c

f(t)g(s)rX(s, t)ds dt

Further note that if X(t) is Gaussian, then the approximating sums
n∑

i=1

X(t∗)(ti − ti−1)

must all be normaly distributed and hence the limiting random variable
∫ b

a

X(t) dt

must also be normally distributed.

39.2. Definition.

A process X(t) is differentiable if there is a second order process Y (t) satisfying

X(t) −X(t0) =

∫ t

t0

Y (s)ds.

The process Y is called the derivative of X and is denoted Ẋ(t), so we may write

X(t) −X(t0) =

∫ t

t0

Ẋ(s)ds.
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Not surprisingly one can readily deduce the following.

39.3. Proposition.

Let X(t) be a differentiable process. Then

rẊ(s, t) =
∂

∂s∂t
rX(s, t).

39.4. Example.

Let X(t) be a second order stationary differentiable process. Then X(t) and Ẋ(t) are
uncorrelated.

Proof. Note that

rXẊ(s, t) =
∂

∂t
rX(t− s) = ṙX(t− s)

so

rXẊ(t, t) = ṙX(0).

Since rX(t) = rX(−t), it follows that

ṙX(t) = −ṙX(−t)

which then implies that rXẊ(t, t) = 0 upon take t = 0.

Since the derivative Ẋ(t) is a random variable, the difference quotients

X(t+ h) −X(t)

h

might not converge point-wise (i.e., in terms of sampling functions) to the the derivative.
However, we can conclude that the difference quotients converge mean-square.
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39.5. Theorem.

Suppose that X(t) is a differentiable second order process. Then the quotients

X(t+ h) −X(t)

h

converge in mean square to Ẋ(t) as h → 0.

Proof. Note that we can write

X(t+ h) −X(t)

h
− Ẋ(t) =

1

h

∫ t+h

t

Ẋ(s)ds− Ẋ(t)

=
1

h

∫ t+h

t

Ẋ(s) − Ẋ(t)ds

Hence

E

(
(X(t+ h) −X(t)

h
− Ẋ(t)

)2
)

= E

(

1

h

∫ t+h

t

Ẋ(u) − Ẋ(t) du
1

h

∫ t+h

t

Ẋ(v) − Ẋ(t)dv

)

=
1

h2

∫ t+h

t

∫ t+h

t

E
(

(Ẋ(u) − Ẋ(t))(Ẋ(v) − Ẋ(t))
)

du dv

(applying Cauchy-Shwarz)

≤ 1

h2

∫ t+h

t

∫ t+h

t

E
(

(Ẋ(u) − Ẋ(t))2
)1/2

E
(

(Ẋ(v) − Ẋ(t))2
)1/2

du dv

Now since second order processes are continuous mean-square, it follows that given any
ε > 0 there is a δ > 0 so that

E
(

(Ẋ(u) − Ẋ(t))2
)1/2

≤ ε

and

E
(

(Ẋ(v) − Ẋ(t))2
)1/2

≤ ε
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if |u− t| ≤ δ and |v − t| ≤ δ. Thus if h ≤ δ then

1

h2

∫ t+h

t

∫ t+h

t

E
(

(Ẋ(u) − Ẋ(t))2
)1/2

E
(

(Ẋ(v) − Ẋ(t))2
)1/2

dudv

≤ 1

h2

∫ t+h

t

∫ t+h

t

ε2

= ε2

Since ε > 0 was arbitrary, this is sufficient to prove the result.

As a consequence of the above theorem, it can be shown that if X(t) is a Gaussian
process then Ẋ(t) is normally distributed.

We note that the Wiener process is not differentiable. This is readily seen from the
fact that

E

((
W (t+ h) −W (t)

h

)2
)

=
σ2

h
.

Thus while the Wiener process has continuous sample functions (since the process de-
scribes the motion of particles), the motion is not smooth! Given that the process models
the ‘wiggles’ due to millions of random collisions with molecules, it is not surprising that the
resulting paths would be continuous but not differentiable. We remark in passing that the
explicit construction of continuous everywhere, differentiable nowhere functions can be a
challenging but not impossible task. The earliest, and most well-known, such function was
given by Weierstrauss in 1872:

f(x) =
∞∑

n=0

an cos(bnπx)

where 0 < a < 1, b is a positive odd integer and

ab > 1 +
3

2
π.

While the Wiener process is not differentiable, it has the following regularity property.
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39.6. Theorem.

Let f : R → R be a differentiable function. Then

lim
ε→0

∫ b

a

f(t)
W (t+ ε) −W (t)

ε
dt

exists and equals

f(b)W (b) − f(a)W (a) −
∫ b

a

W (t)ḟ(t)dt.

Note that if W̃ is a differentiable function, then this is exactly what one would expect
to get by integrating by parts:

lim
ε→0

∫ b

a

f(t)
W̃ (t+ ε) − W̃ (t)

ε
dt =

∫ b

a

f(t)
︸︷︷︸

u

W̃ ′(t)dt
︸ ︷︷ ︸

dv

= f(t)
︸︷︷︸

u

W̃ (t)
︸ ︷︷ ︸

v

∣
∣
b

t=a
−
∫ b

a

W̃ (t)
︸ ︷︷ ︸

v

f ′(t)dt
︸ ︷︷ ︸

du

Proof. The proof actually follows by integrating by parts:

∫ b

a

f(t)
W (t+ ε) −W (t)

ε
dt

=

∫ b

a

f(t)
︸︷︷︸

u

d

dt

1

ε

∫ t+ε

t

W (s)ds dt

︸ ︷︷ ︸

dv

= f(t)
︸︷︷︸

u

1

ε

∫ t+ε

t

W (s)ds

︸ ︷︷ ︸

v

∣
∣
t=b

t=a
−
∫ b

a

1

ε

∫ t+ε

t

W (s)ds

︸ ︷︷ ︸

v

f ′(t) dt
︸ ︷︷ ︸

du

→ f(t)W (t)
∣
∣
t=b

t=a
−
∫ b

a

f ′(t)W (t)dt as ε → 0

The last equalities follow from the fact that W (t) has contininous sample functions.
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Because of the above, we are led to the following definition.

39.7. Definition.

Let f : R → R be a differentiable function. Then we define

∫ b

a

f(t)dW (t)

to be

f(b)W (b) − f(a)W (a) −
∫ b

a

W (t)ḟ(t)dt.

The expression dW (t) in the integrand is sometimes referred to as white noise. From the
standpoint of measure theory, dW (t) is a signed measure and the integral can be thought
of as a Stieltjes integral.

Integrating dW provides a way to approximate the differential when integrating along
a path. Thus when solving the basic motion equation

ẋ = αx+ F

where f represents an external forcing function, we can solve using variation of parameters
even when the forcing function F is white noise which is not, properly speaking, a function
at all but rather a signed measure. We will make this explicit in the next section.

The following theorem enables one to change the order of integration when integrating
dW . While it may seem intuitively obvious, notice that the integrals in question depend on
the rather unusual definition above and hence this must be deduced from the definitions.

39.8. Theorem.

Let f(x, y) be a jointly continuous real-valued function and let a < b. Then

∫ b

a

∫ y

a

f(x, y)dW (x) dy =

∫ b

a

∫ b

x

f(x, y)dy dW (x)

This theorem just says that the usual change of variables formula still works when one of
the iterated integrals is dW (x) rather than just dx. This follows in a straightforward manner
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from the definition of integration dW (x).

a b

x

a

b

y
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Proof. Observe that
∫ y

a

f(x, y)dW (x) = f(x, y)W (x)|yx=a −
∫ y

a

fx(x, y)W (x)dx

= f(y,y)W (y) − f(a, y)W (a) −
∫ y

a

fx(x, y)W (x)dx

Thus

∫ b

a

∫ y

a

f(x, y)dW (x) dy =

=

∫ b

a

f(y,y)W (y) − f(a, y)W (a)dy −
∫ b

a

∫ y

a

fx(x, y)W (x)dx dy

=

∫ b

a

f(x,x)W (x) − f(a,x)W (a) dx−
∫ b

a

∫ b

x

fx(x, y)W (x)dy dx (∗)

On the other hand

∫ b

a

∫ b

x

f(x, y)dy dW (x) =

=

∫ b

x

f(x, y)dyW (x)|bx=a −
∫ b

a

W (x)
d

dx

(
∫ b

x

f(x, y)dy

)

dx

= −
∫ b

a

f(x, y)dy ·W (a) +

∫ b

a

W (x)
d

dx

(
∫ b

x

f(x, y)dy

)

dx (∗∗)
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Now obsserve that

d

dx

(
∫ b

x

f(x, y)dy

)

=

lim
h→0

1

h

(
∫ b

x+h

f(x+ h, y)dy −
∫ b

x

f(x, y)dy

)

lim
h→0

=
1

h

(
∫ b

x+h

f(x+ h, y)dy ±
∫ b

x

f(x+ h, y)dy −
∫ b

x

f(x, y)dy

)

lim
h→0

=
1

h

∫ x

x+h

f(x+ h, y)dy +
1

h

∫ b

x

f(x+ h, y) − f(x, y)dy

(applying the fundamental theorem of calculus to the first term)

= −f(x, x) +

∫ b

x

fx(x, y)dy

Substituting this into (∗∗) gives
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∫ b

a

∫ b

x

f(x, y)dy dW (x) =

= −
∫ b

a

f(a, y)dy ·W (a) −
∫ b

a

W (x)

(
∫ b

x

fx(x, y)dy − f(x, x)

)

dx

= −
∫ b

a

f(a,x) dx ·W (a) −
∫ b

a

W (x)

∫ b

x

fx(x, y)dy dx+

∫ b

a

W (x)f(x,x) dx

=

∫ b

a

f(x,x)W (x) − f(a,x)W (a) dx−
∫ b

a

∫ b

x

fx(x, y)W (x)dy dx (∗ ∗ ∗)

Since (∗) and (∗ ∗ ∗) agree, this proves the theorem.
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39. Integration and Differentiation of Processes: Problems.

1. Find the covariance function for each of the following processes X(t)
(a)

X(t) =

∫ t

0

s dW (s) for t ≥ 0.

(b)

X(t) =

∫ t

0

cos(ts) dW (s) for −∞ < t < ∞.

(c)

X(t) =

∫ t

t−1

(t − s) dW (s) for −∞ < t < ∞.
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40. Integration and Expectation of Processes

40.1. Theorem.

Let f and g be piece-wise differentiable functions and let a < b. Then

E

(
∫ b

a

f(t)dW (t)

∫ b

a

g(t)dW (t)

)

= σ2

∫ b

a

f(t)g(t)dt.

Proof. Applying the definition of the integral and observing
∫ b

a

f(t)dW (t) = f(t)W (t)|bt=a −
∫ b

a

f ′(t)W (t)dt

= f(b)W (b) − f(a)W (a)− f(b)W (a) + f(b)W (a) −
∫ b

a

f ′(t)W (t)dt

= f(b) (W (b) − W (a)) + (f(b) − f(a))W (a) −
∫ b

a

f ′(t)W (t)dt

= f(b) (W (b) − W (a)) +

∫ b

a

f ′(t)W (a)dt −
∫ b

a

f ′(t)W (t)dt

= f(b) (W (b) − W (a)) −
∫ b

a

f ′(t)(W (t)− W (a))dt

Thus, applying the above to each of the integrals inside the expectation operator, we obtain

E

(∫ b

a

f(t)dW (t)

∫ b

a

g(t)dW (t)

)

= E

[(

f(b)(W (b) − W (a)) −
∫ b

a

f ′(t)(W (t)− W (a))dt

)

× · · ·

· · · ×
(

g(b)(W (b) − W (a)) −
∫ b

a

g′(t)(W (t)− W (a))dt

)]

= E

[

f(b)(W (b)− W (a))g(b)(W (b)− W (a))

]

+ · · · (A)
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· · · − E

[

f(b)(W (b) − W (a))

∫ b

a

g′(t)(W (t)− W (a))dt

]

+ · · · (B)

· · · − E

[

g(b)(W (b) − W (a))

∫ b

a

f ′(t)(W (t)− W (a))dt

]

+ · · · (C)

· · · + E

[(∫ b

a

f ′(t)(W (t)− W (a))dt

)(∫ b

a

g′(t)(W (t) − W (a))dt

)]

(D)

We will calculate each of the four terms (A)-(D) separately.
For (A), we recall example 38.16 which states

rW (s, t) =

{

σ2 min{|s|, |t|} if st ≥ 0
0 otherwise

and obtain

(A) = f(b)g(b)E
(
(W (b) −W (a))2

)

= σ2f(b)g(b)(b− a)

= σ2

∫ b

a

f(b)g(b)dt

For (B), we recall 38.17 which states that if s ≥ a and t ≥ a, then

E
(

[W (t) −W (a)][W (s) −W (a)]
)

= σ2 min{(t− s), (t− a)}
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from which we can deduce

(B) = −E
[

f(b)(W (b) −W (a))

∫ b

a

g′(t)(W (t) −W (a))dt

]

= −f(b)

∫ b

a

g′(t)E
[

(W (b) −W (a))(W (t) −W (a))
]

dt

= −σ2f(b)

∫ b

a

(t− a)g′(s)dt

(integrating by parts)

= −σ2f(b)



(t− a)g(t)

∣
∣
∣
∣
∣

b

t=a

−
∫ b

a

g(t)dt





= −σ2f(b)

[

(b− a)g(b) −
∫ b

a

g(t)dt

]

= −σ2f(b)

(
∫ b

a

g(b)dt−
∫ b

a

g(t)dt

)

= σ2

∫ b

a

f(b)(g(t) − g(b))dt

In exactly the same manner,

(C) = σ2

∫ b

a

g(b)(f(t) − f(b))dt.

The analysis of (D) is only slightly more complex. First note that

(D) = E

[(
∫ b

a

f ′(t)(W (t) −W (a))dt

)(
∫ b

a

g′(t)(W (t) −W (a))dt

)

dt

]

= E

[(
∫ b

a

f ′(t)(W (t) −W (a))dt

)(
∫ b

a

g′(s)(W (s) −W (a))ds

)]

=

∫ b

a

f ′(t)

∫ b

a

g′(s)E
[

(W (t) −W (a))(W (s) −W (a))
]

ds dt

= σ2

∫ b

a

f ′(t)

∫ b

a

g′(s)min((t− a), (s− a))ds dt
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We can then re-write the inner integral as

∫ b

a

g′(s) min((t − a), (s − a))ds =

∫ t

a

g′(s)(s− a) ds +

∫ b

t

g′(s)(t − a)ds

(integrating the first term by parts)

= (s − a)g(s)

∣
∣
∣

t

s=a
−
∫ t

a

g(s) ds + (t − a)(g(b) − g(t))

= (t − a)g(b)−
∫ t

a

g(s) ds

=

∫ t

a

(g(b) − g(s))ds

Now substitute this back into the above expression for (D):

(D) = σ2

∫ b

a

f ′(t)

∫ t

a

(g(b) − g(s))ds dt

(changing the order of integration)

= σ2

∫ b

a

(g(b) − g(s))

∫ b

s

f ′(t)dt ds

= σ2

∫ b

a

(g(b) − g(s))(f(b) − f(s))ds
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Now, adding up the results,

(A) + (B) + (C) + (D) = σ2

∫ b

a

f(b)g(b)dt+ · · ·

· · · + σ2

∫ b

a

f(b)(g(t) − g(b))dt+ · · ·

· · · + σ2

∫ b

a

g(b)(f(t) − f(b))dt+ · · ·

· · · + σ2

∫ b

a

(g(b) − g(t))(f(b) − f(t))dt

= σ2

∫ b

a

(

f(b)g(b)+ · · ·

· · · + f(b)g(t) − f(b)g(b))+ · · ·
· · · + g(b)f(t) − g(b)f(b) + · · ·

· · · + (g(b)f(b) − g(b)f(t) − g(t)f(b)+ g(t)f(t)

)

dt

= σ2

∫ b

a

g(t)f(t)dt

40.2. Corollary.

If a ≤ b ≤ c ≤ d then

E

[
∫ b

a

f(t)dW (t)

∫ d

c

g(t)dW (t)

]

= 0 (40.1)

and

E

[
∫ b

a

f(t)dW (t)

∫ c

a

g(t)dW (t)

]

= σ2

∫ b

a

f(t)g(t)dt. (40.2)
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Proof. To verify (40.1),

E

(∫ b

a

f(t)dW (t)

∫ d

c

g(t)d W (t)

)

= E

[(

f(b)(W (b) − W (a)) −
∫ b

a

f ′(t)(W (t)− W (a))dt

)

× · · ·

· · · ×
(

g(c)(W (d) − W (c)) −
∫ d

c

g′(t)(W (t)− W (c)) dt

)]

= E

[

f(b)(W (b) − W (a))g(c)(W (d)− W (c))

]

+ · · · (A)

· · · − E

[

f(b)(W (b)− W (a))

∫ d

c

g′(t)(W (t)− W (c)) dt

]

+ · · · (B)

· · · − E

[

g(d)(W (d)− W (c))

∫ b

a

f ′(t)(W (t)− W (a))dt

]

+ · · · (C)

· · · + E

[(∫ b

a

f ′(t)(W (t)− W (a))dt

)(∫ d

c

g′(t)(W (t)− W (d)) dt

)]

(D)

Because of 38.14(ii) and (iii), it follows that each term in the sum is zero.
For the second conclusion, note that

∫ c

a

g(t)dW (t) =

∫ b

a

g(t)dW (t) +

∫ c

b

g(t)dW (t).

From this

E

[
∫ b

a

f(t)dW (t)

∫ c

a

g(t)dW (t)

]

=

= E

[
∫ b

a

f(t)dW (t)

(
∫ b

a

g(t)dW (t) +

∫ c

b

g(t)dW (t)

)]

= σ2

∫ b

a

f(t)g(t)dt+ 0

applying the above theorem and the first conclusion.
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40.3. Example.

For t ≥ 0 and λ real constant, let X(t) be the process defined by

X(t) =

∫ t

0

eλ(t−ξ) dW (ξ).

Find the mean and covariance functions of X(t).

Solution. The process clearly has zero means. For 0 ≤ s ≤ t, the covariance function is

E[X(s)X(t)] = E

[∫ s

0

eλ(s−ξ) dW (ξ)

∫ t

0

eλ(t−ξ) dW (ξ)

]

= eλ(s+t)E

[∫ s

0

e−λξ dW (ξ)

∫ t

0

e−λξ dW (ξ)

]

= σ2eλ(s+t)
∫ s

0

e−2λξ dξ

= σ2eλ(s+t)

(

1 − e−2λs

2λ

)

=
σ2

2λ

(

eλ(s+t) − eλ(t−s)
)

.

By symmetry, for s, t ≥ 0,

rX(s, t) =
σ2

2λ

(

eλ(s+t) − eλ|t−s|
)

.
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40. Integration and Expectation of Processes: Problems.

1. Let X(t) be defined by

X(t) =

∫ t

0

eλ(t−ξ) dW (ξ),

and let Y (t) be

Y (t) =

∫ t

0

X(s)ds t ≥ 0.

(a) Show that

Y (t) =

∫ t

0

(
eλ(t−ξ) − 1

λ

)

dW (ξ)

for t ≥ 0.
(b) Find var(Y (t)).
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41. Stochastic Differential Equations

Linear, constant coefficient differential equations of the form

Ẋ + λX = F (41.1)

and
aẌ + bẊ + cX = F (41.2)

have many applications in engineering and the sciences. Generally these equations are
used to model a physical system – such as a spring or an electrical circuit – to which an
external force F has been applied. In this section we will be interested in solving these
equations where the forcing function F is random in character.

Generally we will work with the integrated form of these equations for reasons that will
become apparent shortly:

X(t) −X(t0) + λ

∫ t

t0

X(s) ds =

∫ t

t0

F (s)ds

and

a
(

Ẋ(t) − Ẋ(t0)
)

+ b (X(t) −X(t0)) +

∫ t

t0

X(s) ds =

∫ t

t0

F (s)ds

Without loss of generality we can take regularize these equations by taking t0 = 0 through
a simple translation. Writing

G(t) =

∫ t

0

F (s)ds

we can then re-write the above equations in a regularized, integrated form as

X(t) −X(0) + λ

∫ t

0

X(s) ds = G(t) (41.3)

and

a
(

Ẋ(t) − Ẋ(0)
)

+ b (X(t) −X(0)) +

∫ t

0

X(s) ds = G(t) (41.4)

Now if G is any continuously differentiable function, then the integrated equations (41.3)
and (41.4) are equivalent to (41.1) and (41.2) with F = Ġ. However, the integrated equa-
tions make sense even if G is not differentiable. Further, as we shall see, the standard
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variation of parameters technique for solving the non-integrated forms of the equations will
carry over to the integrated case.

The particular equations that we will study arise whenG(t) is the Weiner process, i.e.,
we will study the equations

X(t) −X(0) + λ

∫ t

0

X(s)ds = W (t)

and

a
(

Ẋ(t) − Ẋ(0)
)

+ b (X(t) −X(0)) +

∫ t

0

X(s)ds = W (t)

Since the Weiner process is not differentiable, the non-integrated forms of the equations
are not well-defined, although you will often see the equations written as

Ẋ + λX = Ẇ

and
aẌ + bẊ + cX = Ẇ

where Ẇ is referred to as "white noise." These latter equations are, of course, not well
formed but are generally understood to mean the integrated form of the equations which
are well-defined.

41.1. Lemma.

Suppose that φ(t) is the unique solution to the homogeneous differential equation

φ̇+ λφ = 0

satisfying φ(0) = 1. Set

X(t) =

∫ t

0

φ(t− ξ)dW (ξ).

Then X(t) is the solution to the non-homogeneous equation

X(t) −X(0) + λ

∫ t

0

X(s) ds = W (t) (L0)

satisfying X(0) = 0
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In the above theorem, of course φ(t) is just

φ(t) = e−λt.

The essential feature required for the proof is that x(t) solves the homogeneous initial value
problem. The approach we take will transfer readily to higher order differential equations.

Proof. Clearly X(0) = 0. Further

λ

∫ t

0

X(s)ds = λ

∫ t

0

∫ s

0

φ(t− ξ)dW (ξ) ds

= λ

∫ t

0

∫ t

ξ

φ(s− ξ) ds dW (ξ)

(making the change of variables u 7→ s− ξ)

= λ

∫ t

0

∫ t−ξ

0

φ(u)du dW (ξ). (41.5.)

Since φ(t) solves the homogeneous initial value problem,

φ(t) − 1 + λ

∫ t

0

φ(u)du = 0

or equivalently

λ

∫ t−ξ

0

φ(u)du = 1 − φ(t− ξ).

Substituting this into (41.5) gives

λ

∫ t

0

X(s) ds =

∫ t

0

(1 − φ(t− ξ)) dW (ξ)

= W (t) −W (0) −
∫ t

0

φ(t− ξ) dW (ξ)

= W (t) − 0 −X(t).

Rearranging and using the fact that X(0) = 0, this is equivalent to (L0).

41. Stochastic Differential Equations 419



Langevin’s equationThe following theorem is immediate from the lemma and the fact that the solution to the
initial value problem:

ẋ+ λx = 0 x(0) = x0.

is
x(t) = x0e

−λt.

41.2. Theorem.

The initial value problem

X(t) −X(0) + λ

∫ t

0

X(s) ds = W (t) (L)

X(0) = x0

has unique solution
x(t) +X(t)

where

X(t) =

∫ t

0

e−λ(t−ξ) dW (ξ)

and x(t) is the unique solution to

ẋ+ λx = 0

x(0) = x0

Langevin’s equation is a variation on equation (L). If one takesm to be the molecular
mass of the gas and γ to be the coefficient of friction, then

λ =
γ

m
.

In it’s “differentiated” form, the equation becomes

v̇ +
γ

m
v =

1

m
dW (t).

Now, if X(t) solves

v̇ +
γ

m
v = dW (t).
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and if we set Y (t) = 1
m
X(t), then Y (t) solves the equation

Ẏ +
γ

m
Y =

1

m
dW (t).

In light of 40.3,

var(Y (t)) =
1

m2

σ2

2 γ
m

(

1 − e−2 γ
m t
)

=
σ2

2γm

(

1 − e
−2γt

m

)

.

The Kinetic Theory of Gasses provides another way of analyzing the long-term distri-
bution of the speed of molecules in an ideal gas. In this case, the speed can be thought
of as the magnitude of a vector N(t) = (nx(t), ny(t), nz(t)), where each component is
normally distributed with mean zero and variance kT

m
, where k is the Boltzman constant, T

is the absolute temperature, and m is the molecular mass of the gas. Since the long-term

variance from Langevin’s equation must be σ2

2γm
, we obtain

kT

m
=

σ2

2γm

or

σ2 = 2kTγ.

Since Boltzman’s constant is just

k =
R

N

whereR is the gas constant andN is Avogadro’s number, these were the essential steps in
relating Brownian motion to Avagadro’s number. Perrin used Einstein’s results to calculate
Avogadro’s number from Brownian motion experiments, for which he won the 1926 Nobel
Prize. These calculations and the related experiments provided compelling evidence in
support of the atomic theory of matter, something that was controversial prior to this work.

We can solve second-order, constant coefficient, forced differential equations (2I) in
an exactly similar fashion.
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41.3. Theorem.

Suppose that φ solves the initial value problem

aφ̈+ bφ̇+ cφ = 0

φ(0) = 0 φ̇(0) =
1

a

Then the function X(t) given by

X(t) =

∫ t

0

φ(t− s) dW (s)

solves the initial value problem

a
(

Ẋ(t) − Ẋ(0)
)

+ b

(

X(t) −X(0)

)

+ c

∫ t

0

X(s) ds = W (t) (41.6)

X(0) = Ẋ(0) = 0

41.4. Corollary.

If X(t) is defined as in the preceding theorem and if ψ(t) solves the initial value problem

aψ̈ + bψ̇ + cψ = 0

ψ(0) = ψ0 ψ̇(0) = ψ00

then X(t) + ψ(t) solves the initial value problem

a
(

Ẋ(t) − Ẋ(0)
)

+ b

(

X(t) −X(0)

)

+ c

∫ t

0

X(s) ds = W (t)

X(0) = ψ0 Ẋ(0) = ψ00.
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Proof of the Theorem. First observe

∫ t

0

∫ s

0

φ̇(s− ξ) dW (ξ)ds =

∫ t

0

∫ t

ξ

φ̇(s− ξ) ds dW (ξ)

=

∫ t

0

∫ t−ξ

0

φ̇(s)ds dW (ξ)

=

∫ t

0

(φ(t− ξ) − φ(0)) dW (ξ)

=

∫ t

0

φ(t− ξ) dW (ξ)

= X(t)

Thus X is differentiable and

Ẋ(t) =

∫ t

0

φ̇(t− ξ) dW (ξ).

Substituting into the left-hand-side of (41.6) we see that

a
(

Ẋ(t) − Ẋ(0)
)

+ b

(

X(t) −X(0)

)

+ c

∫ t

0

X(s) ds

= a

∫ t

0

φ̇(t− ξ) dW (ξ) + b

∫ t

0

φ(t− ξ) dW (ξ) + c

∫ t

0

X(s) ds

Now

c

∫ t

0

X(s) ds = c

∫ t

0

∫ s

0

φ(s− ξ) dW (ξ) ds

= c

∫ t

0

∫ t

ξ

φ(s− ξ) ds dW (ξ)

= c

∫ t

0

∫ t−ξ

0

φ(u)dudW (ξ)

We can then further reduce the left-hand-side (41.6) to

∫ t

0

[

aφ̇(t− ξ) + bφ(t− ξ) + c

∫ t−ξ

0

φ(u)du

]

dW (ξ).
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Now, integrating the homogenous problem and apply the fact that φ solves the homoge-
nous problem with φ(0) = 0 and φ̇(0) = 1

a
,

0 = a(φ̇(t) − φ̇(0)) + b(φ(t) − φ(0)) + c

∫ t

0

φ(s)ds

= a

(

φ̇(t) − 1

a

)

+ b(φ(t) − 0) + c

∫ t

0

φ(s)ds

= −1

which implies that for any value of t

aφ̇(t) + bφ(t) + c

∫ t

0

φ(u)du = 1.

Hence, the left-hand-side of (41.6) further reduces to

∫ t

0

1 dW (ξ) = W (t)

This shows thatX solves (41.6) and completes the proof.

41.5. Example.

Solve the following initial value problem:

(

Ẋ(t) − Ẋ(0)
)

+ 2 (X(t) −X(0)) + 2

∫ t

0

X(s) ds = W (t)

X(0) = 0 Ẋ(0) = 1.

Solution. First solve the homogeneous equation

ẍ+ 2ẋ+ 2x = 0.

The characteristic equation is
λ2 + 2λ + 2 =
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which has complex roots
λ = −1 ± i.

From this the general solution to the homogeneous equation is

x(t) = e−t (C1 cos(t) + C2 sin(t)) .

Thus, the function φ(t) that solves the homogenous initial value problem

ẍ+ 2ẋ+ 2x = 0

x(0) = 0 ẋ(0) = 1

is
φ(t) = e−t sin(t).

This lets us conclude that

X(t) =

∫ t

0

e−(t−ξ) sin(t− ξ) dW (ξ)

solves
(

Ẋ(t) − Ẋ(0)
)

+ 2 (X(t) −X(0)) + 2

∫ t

0

X(s)ds = W (t)

X(0) = Ẋ(0) = 0

and the general solution is in the form

e−t (C1 cos(t) + C2 sin(t)) +

∫ t

0

e−(t−ξ) (C1 cos(t− ξ)C2 sin(t− ξ)) dW (ξ).

Solving for C1 and C2 gives that

Y (t) = e−t sin(t) +

∫ t

0

e−(t−ξ) sin(t− ξ) dW (ξ)

solves the initial value problem.

Note that
E(Y (t)) = e−t sin(t)

so that the expected value of a solution to the stochastic agrees with the unforced solution.
Also

Var(Y (t)) = σ2

∫ t

0

e−(t−ξ)2 sin2(t− ξ) dξ

=
σ2

8

[
1 + e−2t (cos(wt) − sin(2t)) − 2

]
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Ornstein-Uhlenbeck process

41. Stochastic Differential Equations: Problems.

1. Let X(t) be the solution to the equation

mX ′(t) + fX(t) = W (t) X(0) = x0, X
′(0) = v0

for constants m and f . (X(t) is called the Ornstein-Uhlenbeck process.)
(a) Express X(t) in terms of W (t).
(b) Express X(t) in terms of the solution to Langevin’s process.
(c) Find the mean and varience of the Ornstein-Uhlenbeck process.

2. Solve each of the following stochastic differential equations and find var(X(t)) for the solution
having initial conditions X(0) = 0 = X ′(0).
(a) X ′′(t) + X ′(t) = W ′(t)
(b) X ′′(t) + 3X ′(t) + 2X(t) = W ′(t)
(c) 4X ′′(t) + 8X ′(t) + 5X(t) = W ′(t)
(d) X ′′(t) + 2X ′(t) + X(t) = W ′(t)
(e) X ′′(t) + X(t) = W ′(t)
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Appendix A. Distributions.

Discrete Distributions.

Binomial Distribution

Density
(n

k

)
pk(1 − p)n−k k = 0, · · · , n

E(X) np

var(X) np(1 − p)

ΦX(t) (pt + (1 − p))
n

Geometric Distribution

Density p(1 − p)k k = 0, · · · ,∞

E(X)
1 − p

p

var(X)
1 − p

p2

ΦX(t)
p

1 − (1 − p)t

Negative Binomial Distribution

Density
(k + r − 1

r − 1

)
pr(1 − p)k k = 0, · · ·

E(X)
r(1 − p)

p

var(X)
r(1 − p)

p2

ΦX(t)

(
p

1 − (1 − p)t

)r

Hypergeometric Distribution

Density

(
r
k

)(
N−r
N−k

)

(
N
n

) , max{0, r + n − N} ≤ k ≤ min{n, r}

N , r and n satisfy N ≥ 0, 0 ≤ r ≤ N, 0 ≤ n ≤ N

E(X)
nr

N

var(X)
n r

N

(
1 − r

N

)
(N − n)

N − 1

Appendix A. Distributions. 427



Poisson Distribution

Density
λke−λ

k!
k = 0, · · · ,∞

E(X) λ

var(X) λ

ΦX (t) exp (λ(t − 1))

Logarithmic Distribution

Density
−1

ln(1 − p)

pk

k
k = 1, · · · ,∞

E(X)
−1

ln(1 − p)

p

1 − p

var(X)
−p(p + ln (1 − p)

(1 − p)2 ln2(1 − p)

ΦX (t)
ln(1 − pt)

ln(1 − p)

Zipf Distribution

Generalized

Harmonic Number H(N, s) =

N∑

k=1

1

ks

Density

1
ks

H(N, s)
k = 0, · · · , N

E(X)
H(N, s − 1)

H(N, s)

ΦX (t)
1

H(N, s)

N∑

n=1

nt

ns

Zeta Distribution

Zeta function ζ(s) =

∞∑

k=1

1

ks

Density

1
ks

ζ(s)
k = 1, · · · ,∞

E(X)
ζ(s − 1)

ζ(s)
s > 2

ΦX (t)
1

ζ(s)

∞∑

n=1

nt

ns
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Uniform Distribution

Density

{
1

b−a
if a ≤ t ≤ b

0 otherwise

E(X)
a + b

2

var(X)
(b− a)2

12

MX (t)
etb − eta

t(b − a)

Exponential Distribution

Density

{
λe−λt t ≥ 0

0 otherwise

E(X)
1

λ

var(X)
1

λ2

MX (t)
λ

λ − t

Cauchy Distribution

Density
1

π(1 + x2)
, x ∈ R

E(X) undefined

var(X) undefined

MX (t) undefined

Normal Distribution

Density
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

, x ∈ R

E(X) µ

var(X) σ2

MX (t) exp

(

µt +
σ2t2

2

)

Gamma and Beta Functions and Identities

Gamma function Γ(x) =

∫
∞

0

t
x−1

e
−t
dt, x > 0

Γ(x + 1) = xΓ(x)andΓ(1/2) =
√
π

Beta Function B(x, y) =

∫ 1

0

tx−1(1 − t)y−1 dt, 0 < x, y

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)

Gamma Distribution

Density
xα−1λαe−λx

Γ(α)
, x > 0

E(X)
α

λ

var(X)
α

λ2

MX (t)

(
λ

λ − t

)α
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Chi-square Distribution

Density
(1/2)k/2

Γ(k/2)
x

k
2

−1e−x/2 , x ≥ 0

E(X) k

var(X) 2k

MX (t) (1 − 2t)
−k/2

Fisher-Snedecor F Distribution

Density
1

xB
(

n1
2 ,

n2
2

)

(
n1x

n1x + n2

)n1
2
(

1 − n1x

n1x + n2

)n2
2

E(X)
n2

n2 − 2
for n2 > 2

var(X)
2n2

2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
for n > 4

MX (t) NA

Student’s t Distribution

Density
Γ((n+ 1)/2)

√
nπ(n/2)(1 + x2/2)(n+1)/2

, x ∈ R

E(X) 0

var(X)
n

n − 2
for n > 2

MX (t) NA

Weibull Distribution

Density
k

λ

(
x

λ

)k−1

exp

(

−
(
x

λ

)k
)

, x ≥ 0

E(X) λΓ(1 + 1/k)

var(X) λ
2
Γ(1 + 2/k) − λ

2
Γ

2
(1 + 1/k)

MX (t) NA

Beta Distribution

Density
1

B(α, β)
xα−1(1 − x)β−1 , 0 ≤ x ≤ 1

E(X)
α

α + β

var(X)
αβ

(α + β)2(α + β + 1)

MX (t) 1 +

∞∑

k=1

(
k∏

r=0

α + r

α + β + r

)

tk

k!

Erlang Distribution

Density
λkxk−1e−λx

(k − 1)!
, x ≥ 0

E(X)
k

λ

var(X)
k

λ2

MX (t)

(
λ

λ − t

)k

for t < λ
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Index

1{Ty<∞}, 308

N(y), 253

G (x, y), 256

G n(x,y), 307

N n(y), 306

ρC(x), 266

ρxy , 252

w y , 308

x → y, 260

absolutely continuous, 66

absorbing, 235

absorption probability, 266

agnostic learning, 212

aperiodic, 329

autocovariance, 386

automobile accidents, 132

Backward Equation, 365

Bayes’ classifier, 214

Bayes’ risk, 214

Bayes’ Rule, 50, 133

Bernoulli trials, 71

Birth and Death Chain, 237
absorption probabilities, 273

Birth and Death Chains, 296

birth and death process, 368

bivariate density, 115

Bose-Einstein statistics, 36

Bounded Convergence Theorem for
Sequences, 315

Branching Chain, 238

Branching Process, 374

Brownian Motion, 394

Cardano Counting Axiom, 20

Cardano, Gerolamo, 20

Cauchy-Schwarz Inequality, 161
C̆ebysev’s Inequality , 162

Central Limit Theorem, 182

Chapman-Kolmogorov Equation, 233
Chapman-Kolmogorov equation, 354

Characteristic function
and sums, 179
uniform distribution, 176

characteristic function, 175

Chernoff Bound, 196
Chernoff, Herman, 196

classification rule, 210

closed
set of states, 262

Combination Rule, 30

Combinations, 30
complementary event, 11

conditional density
continuous random variables, 130
discrete random variables, 128

conditional expectation, 256

conditional probability, 48
confidence level, 192

Continuity Theorem, 182

continuous random variable
defined, 59

converge
in measure, 141
in probability, 141

Counting Processes, 340

covariance, 386
covariance function, 386

cross-covariance, 386
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d, 327
density function

continuous random variables, 66

differentiable, 399
Dirac delta function, 253
discrete random variables, 57
discrete stochastic process, 230
distribution function, 57

Ehrenfest Chain, 234
Einstein, 219

empirical loss, 212
empirical risk, 212
expectation

and Caucy distribution, 147
continuous random variables, 143
gamma random variable, 146
uniform random variable, 147

expectations
discrete random variables, 98
Poisson, 98, 100

Exponential Distribution, 84

exponential random variables
sum of, 122

extinction probability, 281

Factorials, 25

Fermat, Pierre, 20
Fermi-Dirac statistics, 36
Fisher, Ronald, 172
Forward Equation, 366
function

convex, 201
step, 136

Gambler’s Ruin Chain, 236
transition matrix, 246

gamma distribution
sum of, 120

gamma function, 88

gamma random variables
quotient of, 125

Gaussian, 392

Generalized Chernoff Bound, 200

geometric series, 17

Gosset, William Sealey, 172

greatest common divisor, 327

Hall, Monty, 55

Herodotus, 1

hitting time, 248, 252

Hoeffding’s inequality
and risk, 213

Hoeffding’s Inequality (I), 205

Hoeffding’s Inequality (II), 206

Huygens, Christian, 20

identically distributed, 118

independent
discrete random variables, 65
random variables, 117

independent events, 53

Independent Increments, 340

indicator function, 253

indicator funtion, 306

Infinite Server Queue, 378

initial distribtution, 231

Inversion Theorem, 181

irreducible
set of states, 262

joint density
and sums, 116

joint density function, 91, 113
discrete random variables, 65

joint distribution function, 91, 113

Jump Processes, 350

Kelvin, Lord
see Thomson, William, 87
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Langevin’s equation, 420

Laplace transform, 150

Laws of Large Numbers, 196

leads to, 260

Lebesgue, Henri, 66

Legendre transform, 207

Let’s Make a Deal, 55

loss, 211
empirical, 212

loss function, 211

Markov property
for chains, 220, 231

Markov’s Inequality, 163

martingales, 270

Maxwell-Boltzmann statistics, 35

modulus, 173

moment generating function, 150
and expectation, 153
and sums, 156
and variance, 153
exponential random variables, 150
gamma random variables, 159
normal random variables, 155
uniform random variables, 151

moments, 108

Monotone Convergence Theorem, 140

Multiplication Rule, 23

mutually exclusive, 13

Negative Binomial Distribution., 80

Neyman, Jerzy, 172

normal random variables
sums of, 157

null recurrent, 311

occupancy numbers, 33

Ornstein-Uhlenbeck process, 426

Pascal, Blaise, 20

period, 327

permutations, 25

phase space, 220, 230

piecewise continous sample functions, 395

Poisson approximation to binomial, 78

Poisson Process, 341

polling, 189

positive recurrent, 311

probability function, 39

probability generating function, 106
of sums, 110
Poisson, 107, 109

probability space, 39

pure death process, 382

Queuing Chain, 239

random variable, 56

random variables
quotient of, 123

random variables, continuous
gamma, 89
standard normal, 86
sum of exponential, 84

random variables, discrete
Bernoulli, 70
binomial, 72
density functions, 62
independent, 94
multinomial, 75
Poisson, 76
uniform, 70

recurrent
chain, 259
state, 252

Renewal Chain, 238

risk, 211
empirical, 212

434 November 18, 2017



sample function, 398
sample functions, 395

second order stationary, 387
sigma algebra, 38

sojourn times, 362

state space, 56, 220
stationary distribution, 234, 291

and 2-state chain, 225

Stationary Increments, 340
stationary increments, 351

stem diagram, 15

step function, 136
stochastic process, 220

stochastically continuous, 355

strictly stationary, 393
Strong Law of Large Numbers, 308

Student’s t distribution, 172

Telephone Switch Model, 299

The Markov Property, 351

Thomson, William, 87
Time Homogeneous Processes, 351

time series, 220
training set, 219
transient

chain, 259
state, 252

transition function
n-step, 245

transition probabilities, 230, 362
n-step, 233
stationary, 230

Two-state Markov chain, 221

unbiased estimator, 166
Uniform Distribution, 83
unit impulse function, 253
unit point mass, 253

variance, 104

Waiting times, 79
Weak Law of Large Numbers, 186
weak law of large numbers, 211
Wiener Process, 394
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