23. Multiple Regression

In many real-world situations researchers will have several independent variable. Spreadsheets for examples are here.

23.1. Example.

The human resources director for a chain of car dealers is interested in the attributes that influence sales. She randomly selects twenty sales people employed by the dealership and records their sales for the month of April, their scores on a standardized IQ test, and their scores on a standardized test for extroversion. She obtains the following results: The researcher plans to use this information to rate applicants for sales jobs. If she has an applicant with an IQ of 110 and a score of 23 on the extrovert scale, what sales would she predict based on this data?

Sales	IQ	Extroversion Scale
\$2,625	89	21
\$2,700	93	24
\$3,100	91	21
\$3 <mark>,150</mark>	122	23
\$3,175	115	27
\$3,100	100	18
\$2,700	98	19
\$2,475	105	16
\$3, <mark>6</mark> 25	112	23
\$3,525	109	28
\$3,225	<u>130</u>	20
\$3,450	104	25
\$2 , 425	104	20
\$3,025	111	26
\$3,625	97	28
\$2,750	115	29
\$3,150	113	25
\$2,600	88	23
\$2,525	108	19
\$2,650	101	16

Solution. The MultipleRegression tab of the AnalyzeThis spreadsheet answers these questions and more.

First we need to identify which variables are independent and which is dependent. In this example, the HR director is interested in what influences car sales, so this must be the dependent variable. The independent variables are then IQ and extroversion.

The model that the HR director proposes is that there is a linear relationship between sales, IQ, and extroversion:

$$\boldsymbol{y} = \boldsymbol{c} + \boldsymbol{m_1}\boldsymbol{x_1} + \boldsymbol{m_2}\boldsymbol{x_2}$$

where

$oldsymbol{y} =$	car sales
$x_1 =$	IQ score
$x_2 =$	extroversion score

You can then enter the data into the cells B27:D46 of the spreadsheet. Note that y goes into the first column and the other two scores into the next two columns.

The analysis position of the spreadsheet gives you quite a bit of information.

1	⊟ਙਾ∂-ਙਾ≖		i	MultipleRegr	essionExam	ples.xlsx - E	xcel 🔾	William	Ray 🖻			×
Ĩ	ile Home Insert	Draw Pa	ige Layout	Formula	s Data	Review	View	Q Tell me	what you wa	ant to do	<u>م</u>	Sha
Pa	ste	• 11 • A		≡ ≡ ₽ ≡ ≡ ⊡ © ≫ •	General \$ + 9 \$ 00 00 5 Number	* 🕅	Conditior Format as Cell Styles S	nal Formatting * s Table * s * tyles	Ensert Delet	e ▼ ∑ at * ✓	• 2 • • • 0 • • diting	
н	13 * I ×	√ f _×										
A	A	B	с	D	E	F	G	н	1	J	ĸ	
1	Multiple Regress	sion										
2				Puty	ot edit any	n the greer	i cells.					
3				Don	ot add or o	lelete colu	mns or ro	ows.				
4				Ther	e are hidde	en column:	where n	nost				
5				of th	e calculatio	ons are do	ne.	0.0.0.0				
6												
7		-			Multiple	regression	line is o	f the form	(
8	Regression SS	1021166.374				y=c+m , x,	+m,x,+m	1.x.++m.x.				
9	Residual SS	1874583.626										
10	r^2	0.352643141										
11	SEs y	332.0687053										_
12	F Statistic, df	4.630315801	. 17									
13	p-value	0.024815436										
14				1								
15	ANOVA	SS	dF	MS	F	p-value						
16	Total	2895750	19	152407.9	4.630316	0.024815						
17	Regression	1021166.374		510583.2								
18	Residual	1874583.626	17	110269.6								
19								1				
20									l			
21		c	m1	m2	m3	m4	m5	m6	m7			
22	Coefficients	993.9245625	8.219912	49.70863								
23	Standard Error	788.0986054	7.01256	19.63374								
24	t	1.261167772	1.17217	2.531796			0					
25	p-value	22.43%	25.73%	2.15%								
26		Y	X1	X2	X3	X4	X5	X6	X7			
27	Subject1	2625	89	21								
28	Subject2	2700	93	24				i.	1			
20	C	410144	01		l. D	0					1	
	CarSales	ANOVA-Brea	astreeding	Multip	nekegress	(+)	: [4]					P

The first section gives the regression statistics for testing

$$H_0: r^2 = 0$$
 against
 $H_A: r^2 > 0$

The key value is the *p*-value of 0.0248 or 2.48%, which means that we have significant but not highly significant evidence in support of H_A . From this we believe that the observed value of r^2 cannot be attributed to chance.

The second segment, labeled ANOVA we can skip for now.

The final section gives you the values of c, m_1 and m_2 in the above model, and so

$$y = 993.92 + 9.219x_1 + 49.70x_2.$$

From this, it's easy to substitute in $x_1 = 110$ and $x_2 = 23$ to predict sales of 33,341 for the applicant with an IQ score of 110 and an extroversion score of 23.

But there is some additional information. For example, there are p-values for m_1 and m_2 . These relate to the hypotheses

$$H_1: m_1 \neq 0$$
 and $H_2: m_2 \neq 0$.

Thus, if we believe m_2 is not zero, the chance we are wrong is 2.15%. On the other hand, if we believe m_1 is not zero, the chance we are wrong is 25%.

What does this say about using the model to predict sales?

In particular, this means we should not use m_1 to predict sales, since we cannot assume its value is nonzero. Since we can't use m_1 , that means that the above prediction of \$3,341 is also not reliable, since it used m_1 . This suggests running another ANOVA using just extroversion and sales and omitting the variable IQ.

On the hand, the earlier p-value for r^2 lets us conclude that there is a connection between the variables. What the information on the coefficients means is that the connection, while real, is not strong enough to use for prediction.

The MultipleRegression tab of AnalyzeThis has many powerful features built into it, and tests more than one hypothesis. Multiple regression can even provide an alternative way of thinking about ANOVA.

23.2. Example.

There is a folk legend that if a mother drinks a beer prior to nursing her infant, the child will take in more breast milk. To test this, a nurse working in the maternity ward of a hospital randomly selected 40 nursing mothers and randomly divided them into four groups as follows:

• Group I received instruction on breast feeding and ingested 10 oz of beer prior to nursing;

• Group II received the instruction and ingested 10 oz of a non-alcoholic beverage prior to nursing;

• Group III received instruction but was offered no beverage prior to nursing;

• group IV received neither instruction nor beverage prior to nursing. The researcher then weighed the infants before and after nursing and recorded the difference in weight, those differences being the amount ingested.

Solution. Using the ANOVA tab of AnalyzeThis...

		ĸegr	ession-AlvOv	A-Example x	isx - Excel	with or a	аткау і	ті —		
File Home Insert	Draw Page l	ayout	Formulas	Data R	leview	view ⊻ Tel	l me what yo	u want to d		F
Calibri	- 11 - A A			ercentage •	Cone	ditional Formatti	ng ∗ 🖀 lı	nsert *	2 * 2**	
aste BIU+	A -		- ⊞ -	\$ * % *	E Form	nat as Table *	E D	elete *	V - D -	1
• 🌾 📖 T T	- Jan and	<u>*= *=</u>	87 -	00 → .0	Cell	Styles *	F F	ormat *	< *	
ipboard 🕞 Fo	nt	S Alignn	nent 🗔	Number	F9	Styles		Cells	Editing	
20 * : ×	√ f _x =FD	IST(B19,C1	l7,C18)							
A	В	с	D	E	F	G	н	1	J	
						You may h	ave unbala	anced sam	ple	
Treatment Groups	4					sizes, i.e., dit	fferent nur	nbers in e	ach	
SampleSize	40					treatment gr	oup.			
Pooled Mean	3.8975					Variables	are quanti	tative and	generally	ſ
Pooled StdDev	0.861245464					continunous	as oppose	d to discre	ete.	
Alpha	0.05									-
			540 SAV		8360 00					
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8		
Mean	4.42	3.59	3.69	3.89						
Sample Size	10	10	10	10						1
Table I	Value	Degrees	of Freedom	For co	mpletenes	s, this spreads	neet include	es both the	e	-
Total Variance	0.74174375	39		analys	is in Table	I and in Table I	I. Table II o	contains	100	
Column Effect Var	0.10266875	3		inform	ation on "	sums of square	s" and "me	an square		
Residual Variance	0.639075	36	i	statisti	ics, but give	es the same co	nclusions a	s Table I.		
Test Statistic F	1.927825373			17			1	1		
p-value	14.25%									
Table II	SS	dF	MSq	F	р	Critical Value	2			
Total	29,66975	39	0.7607628	1.927825	14.25%	2.866	3			
Within Groups	25.563	36	0.7100833							
Between Groups	4.10675	3	1.3689167							
E 1 1 1 1 1 1				-					- 22	
lests the null hypothesis	that all the colu	inn means	are the san	ie against i	ine afterna	uve that they	are not.			-
ΔΝΟΛΔ	MultipleRearess	ion (6)	MultipleRed	aressi	(+) : 4					

We can also analyze the data using multiple regression by way of indicator variables:

$$m{m_1} = \left\{egin{array}{cc} 1 & ext{if the observation is in Group I} \ 0 & ext{otherwise} \end{array}
ight.$$

$$m{m_2} = \left\{egin{array}{cc} 1 & ext{if the observation is in Group II} \\ 0 & ext{otherwise} \end{array}
ight.$$

$$m{m_3} = \left\{egin{array}{cc} 1 & \mbox{if the observation is in Group III} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

An observation is in Group IV exactly when

$$m_1 = m_2 = m_3 = 0$$

so we don't need an indicator variable for this group. Using MultipleRegression gives identical results to ANOVA.

н.	ייים זפ			P	MultipleKegr	essionExam	ples.xlsx - E	xcel	William R	ay 🗗		Ш	X
File	Home	Insert	Draw Pa	ige Layout	Formula	s Data	Review	View	Q Tell me	what you wa	ant to do	R	Shi
Paste Clipboard	Calibri	U - E	• 11 • A		≡ ≡ ₽ ≡ ≡ ⊡ © ≫ + ignment	+ \$ + 9 * \$ + 9 * 00 00 * Number	• RE % •	Condition Format as Cell Styles St	al Formatting * Table * * yles	Ensert Delet Form Cells	* Σ ≥ * ₹ at * €	• 2•• • 0• •	
H14	*	×	$\checkmark f_x$										
4	A		В	с	D	E	F	G	Н	I.	J	к	
2 3 4 5 6		Breaste			Put y Do n Do n Ther of th	vour data in ot edit any ot add or c e are hidde e calculatio	n the greer other cell: lelete colu en columns ons are doi	n cells. s. mns or rog s where m ne.	ws. ost				
7						Multiple	regression	line is of	the form				
8 Regr	ession SS		4.10675				$y=c+m_1x_1$	+m ₂ x ₂ +m ₃	x ₃ ++m _n x _n				
9 Resi	dual SS		25.563						¥				
0 r^2			0.138415389									-	
1 SEs_	<u>y</u>		0.842664425						-				
2 F Sta	itistic, df		1.927825373	36									
3 p-va	lue		0.142512788		1				-				
4 5 ANO	VA		ss	dF	MS	F	p-value						
6 Tota	E.		29.66975	39	0.760763	1.927825	0.142513			1			
7 Regr	ession		4.10675	3	1.368917							1	
8 Resi	dual		25.563	36	0.710083								
9			6										
0													
1		(5	m1	m2	m3	m4	m5	m6 r	n7			
2 Coef	ficients		3.89	0.53	-0.3	-0.2		Į					
3 Stan	dard Error		0.266473889	0.376851	0.376851	0.376851							
24 t			14.59805319	1.406391	-0.79607	-0.53071							
25 p-va	lue		0.00%	16.82%	43.12%	59.89%							
26		1	Y	X1	X2	X3	X4	X5	X6 >	(7			
7 Subj	ect1		4.9	1	0	0	8						
8 Subj	ect2		4.1	1	0	0						-	
a leur:	Mu	ItipleReg	ression-Brea	stFeedin	Sheet1	(A)	d.:	1	- <u>1</u> 2	1			Ē
				an weathing	arrest .	U							

Notice that the ANOVA section in the spreadsheet replicates exactly the table from the ANOVA tab that we did earlier. In addition, the F-statistic is has the same value as the one that tests

$$H_0: r^2 = 0;$$
 against
 $H_A: r^2 > 0$

Since the *p*-value is 0.1423 or 14.25%, we reject H_0 and believe that the value of r^2 cannot be attributed to chance. Similarly, the ANOVA statistic is telling us that the differences in the means cannot be attributed to chance. The approach using linear regression with indicator variables is thus seen to be statistically equivalent to the test comparing means.